The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A316997 Number of 1's in the first n digits of the binary expansion of sqrt(n). 1
 0, 1, 1, 2, 1, 2, 4, 3, 5, 2, 5, 5, 9, 7, 11, 13, 1, 7, 9, 9, 12, 9, 11, 14, 10, 2, 13, 13, 16, 12, 16, 12, 16, 19, 18, 15, 2, 21, 18, 20, 19, 25, 19, 20, 25, 26, 19, 24, 26, 3, 20, 25, 25, 31, 28, 36, 30, 33, 33, 37, 38 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Rainer Rosenthal, Table of n, a(n) for n = 0..1000 FORMULA a(n^2) = A000120(n). - Michel Marcus, Dec 15 2018 EXAMPLE For n = 7 we have sqrt(7) = 2.64575131... with binary expansion 10.1010010.... Of the first 7 digits there are a(7) = 3 digits equal to 1. MAPLE zaehle := proc(n) local e, p, c, i, z, m; Digits := n+5; e := evalf(sqrt(n)); p := [op(convert(e, binary))]; c := convert(p[1], base, 10); z := 0; m := min(n, nops(c)); for i to m do if c[-i] = 1 then z := z+1; fi; od; return z; end: seq(zaehle(n), n=0..60); # Rainer Rosenthal, Dec 14 2018 a := n -> StringTools:-CountCharacterOccurrences(convert(convert(evalf(sqrt(n), n+5), binary, n), string), "1"): seq(a(n), n=0..60); # Peter Luschny, Dec 15 2018 MATHEMATICA a[n_] := Count[RealDigits[Sqrt[n], 2, n][[1]], 1]; Array[a, 60, 0] (* Amiram Eldar, Dec 14 2018 *) PROG (PARI) a(n)=my(v=concat(binary(sqrt(n)))); hammingweight(v[1..n]) \\ Hugo Pfoertner, Dec 16 2018 CROSSREFS Cf. A004539, A004547, A004555, A004609, A004569, A004585. Cf. A000120, A000290. Sequence in context: A131380 A100461 A302655 * A323465 A364780 A124904 Adjacent sequences: A316994 A316995 A316996 * A316998 A316999 A317000 KEYWORD nonn,easy,base AUTHOR Rainer Rosenthal, Dec 14 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 07:28 EDT 2024. Contains 372760 sequences. (Running on oeis4.)