The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302654 Number of minimum total dominating sets in the n-path graph. 3
 0, 1, 2, 1, 1, 4, 3, 1, 2, 9, 4, 1, 3, 16, 5, 1, 4, 25, 6, 1, 5, 36, 7, 1, 6, 49, 8, 1, 7, 64, 9, 1, 8, 81, 10, 1, 9, 100, 11, 1, 10, 121, 12, 1, 11, 144, 13, 1, 12, 169, 14, 1, 13, 196, 15, 1, 14, 225, 16, 1, 15, 256, 17, 1, 16, 289, 18, 1, 17, 324, 19, 1, 18, 361, 20, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Path Graph Eric Weisstein's World of Mathematics, Total Dominating Set Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1). FORMULA a(n) = ((-1)^n*(n - 2)^2 + (6 + n)^2 - 2*(n - 2)*(n + 6)*cos(n*Pi/2) - 48*sin(n*Pi/2))/6. a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). G.f.: x^2*(1 + 2*x + x^2 + x^3 + x^4 - 3*x^5 - 2*x^6 - x^7 + x^9 + x^10) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3). - Colin Barker, Dec 25 2019 MATHEMATICA Table[Piecewise[{{1, Mod[n, 4] == 0}, {((n + 2)/4)^2, Mod[n, 4] == 2}, {(n - 1)/4, Mod[n, 4] == 1}, {(n + 5)/4, Mod[n, 4] == 3}}], {n, 20}] Table[((-1)^n (n - 2)^2 + (6 + n)^2 - 2 (n - 2) (n + 6) Cos[n Pi/2] - 48 Sin[n Pi/2])/64, {n, 20}] LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {0, 1, 2, 1, 1, 4, 3, 1, 2, 9, 4, 1}, 20] PROG (PARI) concat(0, Vec(x^2*(1 + 2*x + x^2 + x^3 + x^4 - 3*x^5 - 2*x^6 - x^7 + x^9 + x^10) / ((1 - x)^3*(1 + x)^3*(1 + x^2)^3) + O(x^70))) \\ Colin Barker, Dec 25 2019 CROSSREFS Sequence in context: A125790 A294082 A129705 * A264831 A264728 A306790 Adjacent sequences:  A302651 A302652 A302653 * A302655 A302656 A302657 KEYWORD nonn,easy AUTHOR Eric W. Weisstein, Apr 11 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 17:05 EDT 2021. Contains 345085 sequences. (Running on oeis4.)