login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355259
Triangle read by rows. Row k are the coefficients of the polynomials (sorted by ascending powers) which interpolate the points (n, A355257(n, k+1)) for n = 0..k.
1
1, 3, 2, 14, 12, 3, 90, 82, 30, 4, 744, 680, 285, 60, 5, 7560, 6788, 2985, 760, 105, 6, 91440, 80136, 35532, 9870, 1715, 168, 7, 1285200, 1098984, 482300, 138796, 27160, 3444, 252, 8, 20603520, 17227584, 7425492, 2152584, 447405, 65520, 6342, 360, 9
OFFSET
0,2
COMMENTS
Conjecture from Mélika Tebni: These polynomials generate column k + 1 of
EXAMPLE
[0] 1;
[1] 3, 2;
[2] 14, 12, 3;
[3] 90, 82, 30, 4;
[4] 744, 680, 285, 60, 5;
[5] 7560, 6788, 2985, 760, 105, 6;
[6] 91440, 80136, 35532, 9870, 1715, 168, 7;
[7] 1285200, 1098984, 482300, 138796, 27160, 3444, 252, 8;
[8] 20603520, 17227584, 7425492, 2152584, 447405, 65520, 6342, 360, 9;
.
Seen as polynomials:
p0(x) = 1;
p1(x) = 3 + 2*x;
p2(x) = 14 + 12*x + 3*x^2;
p3(x) = 90 + 82*x + 30*x^2 + 4*x^3;
p4(x) = 744 + 680*x + 285*x^2 + 60*x^3 + 5*x^4;
p5(x) = 7560 + 6788*x + 2985*x^2 + 760*x^3 + 105*x^4 + 6*x^5;
p6(x) = 91440 + 80136*x + 35532*x^2 + 9870*x^3 + 1715*x^4 + 168*x^5 + 7*x^6;
MAPLE
A355257 := (n, k) -> add(k!*binomial(k + n - 1, k - j - 1)/(j + 1), j = 0..k-1):
for k from 0 to 9 do CurveFitting:-PolynomialInterpolation([seq([n, A355257(n, k+1)], n = 0..k)], x):
print(seq(coeff(%, x, j), j = 0..k)) od:
CROSSREFS
Cf. A355257.
Sequence in context: A064536 A361456 A324012 * A231183 A324661 A163355
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 03 2022
STATUS
approved