login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows. Row k are the coefficients of the polynomials (sorted by ascending powers) which interpolate the points (n, A355257(n, k+1)) for n = 0..k.
1

%I #5 Jul 04 2022 06:51:09

%S 1,3,2,14,12,3,90,82,30,4,744,680,285,60,5,7560,6788,2985,760,105,6,

%T 91440,80136,35532,9870,1715,168,7,1285200,1098984,482300,138796,

%U 27160,3444,252,8,20603520,17227584,7425492,2152584,447405,65520,6342,360,9

%N Triangle read by rows. Row k are the coefficients of the polynomials (sorted by ascending powers) which interpolate the points (n, A355257(n, k+1)) for n = 0..k.

%C Conjecture from _Mélika Tebni_: These polynomials generate column k + 1 of

%C A355257.

%e [0] 1;

%e [1] 3, 2;

%e [2] 14, 12, 3;

%e [3] 90, 82, 30, 4;

%e [4] 744, 680, 285, 60, 5;

%e [5] 7560, 6788, 2985, 760, 105, 6;

%e [6] 91440, 80136, 35532, 9870, 1715, 168, 7;

%e [7] 1285200, 1098984, 482300, 138796, 27160, 3444, 252, 8;

%e [8] 20603520, 17227584, 7425492, 2152584, 447405, 65520, 6342, 360, 9;

%e .

%e Seen as polynomials:

%e p0(x) = 1;

%e p1(x) = 3 + 2*x;

%e p2(x) = 14 + 12*x + 3*x^2;

%e p3(x) = 90 + 82*x + 30*x^2 + 4*x^3;

%e p4(x) = 744 + 680*x + 285*x^2 + 60*x^3 + 5*x^4;

%e p5(x) = 7560 + 6788*x + 2985*x^2 + 760*x^3 + 105*x^4 + 6*x^5;

%e p6(x) = 91440 + 80136*x + 35532*x^2 + 9870*x^3 + 1715*x^4 + 168*x^5 + 7*x^6;

%p A355257 := (n, k) -> add(k!*binomial(k + n - 1, k - j - 1)/(j + 1), j = 0..k-1):

%p for k from 0 to 9 do CurveFitting:-PolynomialInterpolation([seq([n, A355257(n, k+1)], n = 0..k)], x):

%p print(seq(coeff(%, x, j), j = 0..k)) od:

%Y Cf. A355257.

%K nonn,tabl

%O 0,2

%A _Peter Luschny_, Jul 03 2022