|
|
A121326
|
|
Primes of the form 4*k^2 + 1.
|
|
16
|
|
|
5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617, 42437, 44101, 50177, 52901, 55697
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Except for the initial 2 in A002496 this sequence is the same as A002496.
The prime factors of numbers of the form 4k^2 + 1 (a sum of two squares) are of the form 4m + 1.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
For k=4, 4k^2 + 1 = 17, a prime.
|
|
MATHEMATICA
|
Select[Table[4n^2+1, {n, 0, 800}], PrimeQ] (* Vincenzo Librandi, Dec 02 2011 *)
|
|
PROG
|
(PARI) for(x=1, 200, y=4*x^2+1; if(isprime(y), print1(y", ")))
(Magma) [a: n in [0..400] | IsPrime(a) where a is 4*n^2+1]; // Vincenzo Librandi, Dec 02 2011
|
|
CROSSREFS
|
Cf. A002496.
Sequence in context: A360204 A147204 A168024 * A347300 A212876 A147219
Adjacent sequences: A121323 A121324 A121325 * A121327 A121328 A121329
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Cino Hilliard, Aug 26 2006
|
|
STATUS
|
approved
|
|
|
|