Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 28 2023 08:57:25
%S 1,1,2,6,18,58,198,696,2506,9205,34344,129792,495834,1911640,7428444,
%T 29064650,114404410,452719183,1799994588,7187148262,28807364008,
%U 115865980972,467497031164,1891710323324,7675031497682,31215088847239
%N G.f. satisfies: A(x) = 1 + Sum_{n>=1} q^(2n-1)/(1 - q^(2n-1)) where q = x*A(x).
%H Vaclav Kotesovec, <a href="/A190790/b190790.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f. A(x) satisfies:
%F * A(x) = 1 + Sum_{n>=1} q^(n*(n+1)/2)/(1 - q^n), where q = x*A(x);
%F * A(x) = 1 + Sum_{n>=1} q^n/(1 - q^(2n)), where q = x*A(x);
%F * A(x) = 1 + Sum_{n>=1} A001227(n)*x^n*A(x)^n, where A001227(n) = number of odd divisors of n.
%F Let D(x) = 1 + Sum_{n>=1} A001227(n)*x^n, then
%F * A(x) = D(x*A(x)) and D(x) = A(x/D(x));
%F * A(x) = (1/x)*Series_Reversion(x/D(x));
%F * a(n) = [x^n] D(x)^(n+1)/(n+1), the coefficient of x^n in D(x)^(n+1)/(n+1) for n>=0.
%F a(n) ~ c * d^n / n^(3/2), where d = 4.3154117906555438598489327064282723007551580672340735654761205324876... and c = 0.545252538971019249263783268322061859441589544238489362753993274... - _Vaclav Kotesovec_, Sep 28 2023
%e G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 18*x^4 + 58*x^5 + 198*x^6 +...
%e Let q = x*A(x), then the g.f. A(x) satisfies the following series:
%e * A(x) = 1 + q/(1 - q) + q^3/(1 - q^3) + q^5/(1 - q^5) + q^7/(1 - q^7) +...
%e * A(x) = 1 + q/(1 - q) + q^3/(1 - q^2) + q^6/(1 - q^3) + q^10/(1 - q^4) +...
%e * A(x) = 1 + q/(1 - q^2) + q^2/(1 - q^4) + q^3/(1 - q^6) + q^4/(1 - q^8) +...
%e * A(x) = 1 + q + q^2 + 2*q^3 + q^4 + 2*q^5 + 2*q^6 +...+ A001227(n)*q^n +...
%t nmax = 30; A[_] = 0; Do[A[x_] = 1 + Sum[(x*A[x])^(2*k-1)/(1 - (x*A[x])^(2*k-1)), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* _Vaclav Kotesovec_, Sep 28 2023 *)
%t (* Calculation of constant d: *) val = r /. FindRoot[{(Log[1 - r^2*s^2] + QPolyGamma[0, -1/2, r^2*s^2]) / Log[r^2*s^2] == s - 1 - 1/(1 - r*s), r*(1/(-1 + r*s)^2 + (2*r* s*(1/(-1 + r^2*s^2) + Derivative[0, 0, 1][QPolyGamma][0, -1/2, r^2*s^2]))/ Log[r^2*s^2]) == 1 + (2*(s - 1 - 1/(1 - r*s)))/(s*Log[r^2*s^2])}, {r, 1/4}, {s, 2}, WorkingPrecision -> 200]; N[ 1/Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3] (* _Vaclav Kotesovec_, Sep 28 2023 *)
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,(x*A)^(2*m-1)/(1-(x*A)^(2*m-1)+x*O(x^n))));polcoeff(A,n)}
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,(x*A)^(m*(m+1)/2)/(1-(x*A)^m+x*O(x^n))));polcoeff(A,n)}
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,(x*A)^m/(1-(x*A)^(2*m)+x*O(x^n))));polcoeff(A,n)}
%o (PARI) {a(n)=local(D=1+sum(m=1,n,sumdiv(m, d, d%2)*x^m)+x*O(x^n));polcoeff(1/x*serreverse(x/D),n)}
%o (PARI) {a(n)=local(D=1+sum(m=1,n,sumdiv(m, d, d%2)*x^m)+x*O(x^n));polcoeff(D^(n+1)/(n+1),n)}
%K nonn
%O 0,3
%A _Paul D. Hanna_, May 20 2011