login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A306443
Number of ways of partitioning the set of the first n primes into two subsets whose sums differ at most by 1.
6
1, 0, 1, 1, 1, 1, 3, 2, 6, 5, 16, 13, 45, 39, 138, 122, 439, 392, 1417, 1286, 4698, 4341, 16021, 14860, 55146, 51085, 190274, 178402, 671224, 634511, 2404289, 2260918, 8535117, 8067237, 30635869, 29031202, 110496946, 105250449, 401422210, 383579285, 1467402238
OFFSET
0,7
LINKS
EXAMPLE
a(8) = 6: 2,17,19/3,5,7,11,13; 3,5,11,19/2,7,13,17; 3,5,13,17/2,7,11,19; 3,7,11,17/2,5,13,19; 2,3,5,11,17/7,13,19; 2,5,7,11,13/3,17,19.
a(9) = 5: 2,3,5,17,23/7,11,13,19; 2,5,7,13,23/3,11,17,19; 2,5,7,17,19/3,11,13,23; 2,5,11,13,19/3,7,17,23; 2,7,11,13,17/3,5,19,23.
MAPLE
s:= proc(n) s(n):= `if`(n=0, 1, ithprime(n)+s(n-1)) end:
b:= proc(n, i) option remember; `if`(i=0, `if`(n<=1, 1, 0),
`if`(n>s(i), 0, (p->b(n+p, i-1)+b(abs(n-p), i-1))(ithprime(i))))
end:
a:= n-> ceil(b(0, n)/2):
seq(a(n), n=0..45);
MATHEMATICA
s[n_] := s[n] = If[n == 0, 1, Prime[n] + s[n - 1]];
b[n_, i_] := b[n, i] = If[i==0, If[n <= 1, 1, 0], If[n > s[i], 0, Function[ p, b[n + p, i - 1] + b[Abs[n - p], i - 1]][Prime[i]]]];
a[n_] := Ceiling[b[0, n]/2];
a /@ Range[0, 45] (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)
CROSSREFS
Bisections give: A022894 (odd part), A113040 (even part).
Sequence in context: A371906 A293549 A370377 * A336518 A189073 A107271
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 31 2019
STATUS
approved