login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189073
Triangle read by rows: T(n,k) is the number of inversions in k-compositions of n for n >= 3, 2 <= k <= n-1.
2
1, 1, 3, 2, 6, 6, 2, 12, 18, 10, 3, 18, 42, 40, 15, 3, 27, 78, 110, 75, 21, 4, 36, 132, 240, 240, 126, 28, 4, 48, 204, 460, 600, 462, 196, 36, 5, 60, 300, 800, 1290, 1302, 812, 288, 45, 5, 75, 420, 1300, 2490, 3108, 2548, 1332, 405, 55, 6, 90, 570, 2000, 4440, 6594, 6692, 4608, 2070, 550, 66
OFFSET
3,3
COMMENTS
The Heibach et al. reference has a table for n <= 14.
LINKS
S. Heubach, A. Knopfmacher, M. E. Mays and A. Munagi, Inversions in Compositions of Integers, to appear in Quaestiones Mathematicae.
FORMULA
G.f.: (1-x)*x^3/((1+x)*(1-x-y*x)^3). - Geoffrey Critzer, Mar 19 2014
EXAMPLE
Triangle begins:
1;
1, 3;
2, 6, 6;
2, 12, 18, 10;
3, 18, 42, 40, 15;
3, 27, 78, 110, 75, 21;
4, 36, 132, 240, 240, 126, 28;
4, 48, 204, 460, 600, 462, 196, 36;
5, 60, 300, 800, 1290, 1302, 812, 288, 45;
5, 75, 420, 1300, 2490, 3108, 2548, 1332, 405, 55;
6, 90, 570, 2000, 4440, 6594, 6692, 4608, 2070, 550, 66;
...
T(5,3) = 6 because we have: 3+1+1, 1+3+1, 1+1+3, 2+2+1, 2+1+2, 1+2+2 having 2,1,0,2,1,0 inversions respectively. - Geoffrey Critzer, Mar 19 2014
MAPLE
T:= proc(n, k) option remember;
if k=2 then floor((n-1)/2)
elif k>=n then 0
else T(n-1, k) +k/(k-2) *T(n-1, k-1)
fi
end:
seq(seq(T(n, k), k=2..n-1), n=3..13); # Alois P. Heinz, Apr 17 2011
MATHEMATICA
T[n_, k_] := T[n, k] = Which[k == 2, Floor[(n-1)/2], k >= n, 0, True, T[n-1, k] + k/(k-2)*T[n-1, k-1]]; Table[Table[T[n, k], {k, 2, n-1}], {n, 3, 13}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Alois P. Heinz *)
CROSSREFS
Row sums are A189052. The first column is A004526(n-1). Diagonal is A000217(n-2). Lower diagonal is A002411(n-3). 2nd lower diagonal is A001621(n-4).
Sequence in context: A370377 A306443 A336518 * A107271 A196565 A104633
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Apr 16 2011
STATUS
approved