login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189074 Irregular triangle read by rows: T(n,k) = number of compositions of n with k inversions (n >= 0, 0 <= k <= floor(n^2/8). 2
1, 1, 2, 3, 1, 5, 2, 1, 7, 5, 3, 1, 11, 8, 7, 4, 2, 15, 15, 14, 10, 6, 3, 1, 22, 23, 26, 21, 17, 10, 6, 2, 1, 30, 37, 44, 42, 36, 27, 19, 11, 6, 3, 1, 42, 55, 73, 74, 73, 60, 50, 34, 24, 13, 8, 4, 2, 56, 83, 115, 128, 133, 123, 109, 87, 68, 48, 32, 20, 12, 6, 3, 1, 77, 118, 177, 209, 235, 230, 223, 192, 166, 129, 100, 70, 51, 31, 20, 11, 6, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Row sums are powers of 2.
The Heubach et al. reference has a table for n <= 12.
LINKS
S. Heubach, A. Knopfmacher, M. E. Mays and A. Munagi, Inversions in Compositions of Integers, to appear in Quaestiones Mathematicae.
EXAMPLE
T(4,0) = 5: [4], [1,3], [2,2], [1,1,2], [1,1,1,1] - all partitions of 4.
T(5,2) = 3: [2,2,1], [3,1,1], [1,2,1,1].
T(6,4) = 2: [2,2,1,1], [2,1,1,1,1].
Triangle begins:
1
1
2
3 1
5 2 1
7 5 3 1
11 8 7 4 2
15 15 14 10 6 3 1
22 23 26 21 17 10 6 2 1
...
MAPLE
T:= proc(n) option remember; local b, p;
b:=proc(m, i, l)
if m=0 then p(i):= p(i)+1
else seq(b(m-h, i+nops(select(j->j<h, l)), [h, l[]]), h=1..m)
fi
end;
p:= proc() 0 end; forget(p);
b(n, 0, []); seq(p(i), i=0..floor(n^2/8))
end:
seq(T(n), n=0..12); # Alois P. Heinz, Apr 17 2011
MATHEMATICA
T[n_] := T[n] = Module[{b, p}, b[m_, i_, l_List] := If[m == 0, p[i] = p[i] + 1, Table[b[m-h, i+Length[Select[ l, #<h&]], Join[{h}, l]], {h, 1, m}]]; Clear[p]; p[_]=0; b[n, 0, {}]; Table[p[i], {i, 0, Floor[n^2/8]}]]; Table[ T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 17 2016, after Alois P. Heinz *)
CROSSREFS
The first two columns are A000041 and A058884 (for n>0). Lengths of rows are given by 1+A001972(n-3). Row sums are A011782.
Sequence in context: A066909 A095195 A229961 * A255973 A169615 A076791
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Apr 16 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 16:06 EST 2023. Contains 367713 sequences. (Running on oeis4.)