login
A255973
Trace of the minimal alternating Fibonacci representation of n.
2
0, 1, 2, 3, -1, 5, -2, -1, 8, 1, -3, -2, -1, 13, 1, 2, -5, 1, -3, -2, -1, 21, 1, 2, 3, -1, -8, 1, 2, -5, 1, -3, -2, -1, 34, 1, 2, 3, -1, 5, -2, -1, -13, 1, 2, 3, -1, -8, 1, 2, -5, 1, -3, -2, -1, 55, 1, 2, 3, -1, 5, -2, -1, 8, 1, -3, -2, -1, -21, 1, 2, 3, -1
OFFSET
0,3
COMMENTS
See A256655 for definitions.
LINKS
EXAMPLE
Let R(k) be the minimal alternating Fibonacci representation of k. The trace of R(k) is the last term.
R(1) = 1, trace = 1
R(2) = 2, trace = 2
R(3) = 3, trace = 3
R(4) = 5 - 1, trace = -1
R(5) = 5, trace = 5
R(6) = 6 - 2, trace = -2
MATHEMATICA
b[n_] = Fibonacci[n]; bb = Table[b[n], {n, 1, 70}];
h[0] = {1}; h[n_] := Join[h[n - 1], Table[b[n + 2], {k, 1, b[n]}]];
g = h[12]; r[0] = {0};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]];
Table[Last[r[n]], {n, 0, 200}] (* A255973 *)
CROSSREFS
Cf. A000045, A256655 (representations R(n)), A256656 (numbers with positive trace), A256657 (numbers with nonpositive trace), A256663 (positive part of R(n)), A256664 (nonpositive part of R(n)), A256654.
Sequence in context: A229961 A189074 A370484 * A169615 A076791 A246177
KEYWORD
easy,sign
AUTHOR
Clark Kimberling, Apr 08 2015
STATUS
approved