OFFSET
0,5
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
EXAMPLE
T(3,1) = 3: 1a1a1a, 2a1a, 1a.
T(3,2) = 8: 1a1a1b, 1a1b1a, 1b1a1a, 1b1b1a, 1b1a1b, 1a1b1b, 2a1b, 2b1a.
T(3,3) = 6: 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 2;
0, 3, 8, 6;
0, 5, 24, 42, 24;
0, 7, 60, 198, 264, 120;
0, 11, 144, 780, 1848, 1920, 720;
0, 15, 320, 2778, 10512, 18840, 15840, 5040;
0, 22, 702, 9342, 53184, 146760, 208080, 146160, 40320;
...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k -i]*(-1)^i* Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Mar 12 2015
STATUS
approved