login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255970
Number T(n,k) of partitions of n into parts of exactly k sorts; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
5
1, 0, 1, 0, 2, 2, 0, 3, 8, 6, 0, 5, 24, 42, 24, 0, 7, 60, 198, 264, 120, 0, 11, 144, 780, 1848, 1920, 720, 0, 15, 320, 2778, 10512, 18840, 15840, 5040, 0, 22, 702, 9342, 53184, 146760, 208080, 146160, 40320, 0, 30, 1486, 30186, 250128, 999720, 2129040, 2479680, 1491840, 362880
OFFSET
0,5
LINKS
FORMULA
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A246935(n,k-i).
T(n,k) = k! * A256130(n,k).
EXAMPLE
T(3,1) = 3: 1a1a1a, 2a1a, 1a.
T(3,2) = 8: 1a1a1b, 1a1b1a, 1b1a1a, 1b1b1a, 1b1a1b, 1a1b1b, 2a1b, 2b1a.
T(3,3) = 6: 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 2;
0, 3, 8, 6;
0, 5, 24, 42, 24;
0, 7, 60, 198, 264, 120;
0, 11, 144, 780, 1848, 1920, 720;
0, 15, 320, 2778, 10512, 18840, 15840, 5040;
0, 22, 702, 9342, 53184, 146760, 208080, 146160, 40320;
...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k -i]*(-1)^i* Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
CROSSREFS
Columns k=0-1 give: A000007, A000041 (for n>0).
Main diagonal gives A000142.
Row sums give A278644.
Sequence in context: A255903 A118262 A065484 * A336978 A011137 A143396
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Mar 12 2015
STATUS
approved