login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number T(n,k) of partitions of n into parts of exactly k sorts; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
5

%I #21 Sep 25 2023 17:33:26

%S 1,0,1,0,2,2,0,3,8,6,0,5,24,42,24,0,7,60,198,264,120,0,11,144,780,

%T 1848,1920,720,0,15,320,2778,10512,18840,15840,5040,0,22,702,9342,

%U 53184,146760,208080,146160,40320,0,30,1486,30186,250128,999720,2129040,2479680,1491840,362880

%N Number T(n,k) of partitions of n into parts of exactly k sorts; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

%H Alois P. Heinz, <a href="/A255970/b255970.txt">Rows n = 0..140, flattened</a>

%F T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A246935(n,k-i).

%F T(n,k) = k! * A256130(n,k).

%e T(3,1) = 3: 1a1a1a, 2a1a, 1a.

%e T(3,2) = 8: 1a1a1b, 1a1b1a, 1b1a1a, 1b1b1a, 1b1a1b, 1a1b1b, 2a1b, 2b1a.

%e T(3,3) = 6: 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a.

%e Triangle T(n,k) begins:

%e 1;

%e 0, 1;

%e 0, 2, 2;

%e 0, 3, 8, 6;

%e 0, 5, 24, 42, 24;

%e 0, 7, 60, 198, 264, 120;

%e 0, 11, 144, 780, 1848, 1920, 720;

%e 0, 15, 320, 2778, 10512, 18840, 15840, 5040;

%e 0, 22, 702, 9342, 53184, 146760, 208080, 146160, 40320;

%e ...

%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))

%p end:

%p T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):

%p seq(seq(T(n, k), k=0..n), n=0..10);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k -i]*(-1)^i* Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Feb 22 2016, after _Alois P. Heinz_ *)

%Y Columns k=0-1 give: A000007, A000041 (for n>0).

%Y Main diagonal gives A000142.

%Y Row sums give A278644.

%Y Cf. A246935, A256130, A319600.

%K nonn,tabl

%O 0,5

%A _Alois P. Heinz_, Mar 12 2015