login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143396
Triangle T(n,k) = number of forests of labeled rooted trees of height at most 1, with n labels, k of which are used for root nodes and any root may contain >= 1 labels, n >= 0, 0<=k<=n.
12
1, 0, 1, 0, 2, 2, 0, 3, 9, 5, 0, 4, 30, 40, 15, 0, 5, 90, 220, 185, 52, 0, 6, 255, 1040, 1485, 906, 203, 0, 7, 693, 4550, 9905, 9891, 4718, 877, 0, 8, 1820, 19040, 59850, 87416, 66808, 26104, 4140, 0, 9, 4644, 77448, 341082, 686826, 750120, 463212, 153063, 21147
OFFSET
0,5
FORMULA
T(n,k) = C(n,k) * Sum_{t=0..k} Stirling2(k,t) * t^(n-k).
E.g.f.: exp(exp(x)*(exp(x*y)-1)). - Vladeta Jovovic, Dec 08 2008
EXAMPLE
T(3,2) = 9: {1,2}<-3, {1,3}<-2, {2,3}<-1, {1}<-3{2}, {1}{2}<-3, {1}<-2{3}, {1}{3}<-2, {2}<-1{3}, {2}{3}<-1.
Triangle begins:
1;
0, 1;
0, 2, 2;
0, 3, 9, 5;
0, 4, 30, 40, 15;
0, 5, 90, 220, 185, 52;
...
MAPLE
T:= (n, k)-> binomial(n, k)*add(Stirling2(k, t)*t^(n-k), t=0..k):
seq(seq(T(n, k), k=0..n), n=0..11);
MATHEMATICA
T[n_, k_] := T[n, k] = Binomial[n, k]*Sum[StirlingS2[k, t]*If[n == k, 1, t^(n - k)], {t, 0, k}];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 27 2016, translated from Maple, updated Jan 01 2021 *)
CROSSREFS
Diagonal gives A000110.
Row sums give A143405.
T(2n,n) gives A273661.
Sequence in context: A255970 A336978 A011137 * A350266 A376724 A375470
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 12 2008
STATUS
approved