login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375470
a(n) = Sum_{k=0..floor(n/3)} (k+1) * binomial(k,n-3*k)^2.
2
1, 0, 0, 2, 2, 0, 3, 12, 3, 4, 36, 36, 9, 80, 180, 86, 155, 600, 607, 402, 1581, 2808, 1967, 3780, 9816, 10376, 10584, 28626, 44918, 41184, 77627, 160436, 181044, 228972, 499512, 735654, 811823, 1467072, 2640231, 3191642, 4494502, 8566308, 12280547, 15315974, 26498718
OFFSET
0,4
FORMULA
G.f.: (1-x^3-x^4)/((1-x^3-x^4)^2 - 4*x^7)^(3/2).
PROG
(PARI) a(n) = sum(k=0, n\3, (k+1)*binomial(k, n-3*k)^2);
CROSSREFS
Cf. A376721.
Sequence in context: A143396 A350266 A376724 * A361893 A244129 A363907
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 17 2024
STATUS
approved