login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361893
Triangle read by rows. T(n, k) = n! * binomial(n - 1, k - 1) / (n - k)!.
1
1, 0, 1, 0, 2, 2, 0, 3, 12, 6, 0, 4, 36, 72, 24, 0, 5, 80, 360, 480, 120, 0, 6, 150, 1200, 3600, 3600, 720, 0, 7, 252, 3150, 16800, 37800, 30240, 5040, 0, 8, 392, 7056, 58800, 235200, 423360, 282240, 40320, 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880
OFFSET
0,5
FORMULA
T(n, k) = k! * binomial(n, k) * binomial(n - 1, k - 1).
T(n + 1, k + 1) / (n + 1) = A144084(n, k) = (-1)^(n - k)*A021010(n, k).
T(n, k) = [x^k] n! * ([y^n](1 + (x*y / (1 - x*y)) * exp(y / (1 - x*y)))).
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 2, 2;
[3] 0, 3, 12, 6;
[4] 0, 4, 36, 72, 24;
[5] 0, 5, 80, 360, 480, 120;
[6] 0, 6, 150, 1200, 3600, 3600, 720;
[7] 0, 7, 252, 3150, 16800, 37800, 30240, 5040;
[8] 0, 8, 392, 7056, 58800, 235200, 423360, 282240, 40320;
[9] 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880;
MAPLE
A361893 := (n, k) -> n!*binomial(n - 1, k - 1)/(n - k)!:
seq(seq(A361893(n, k), k = 0..n), n = 0..9);
# Using the egf.:
egf := 1 + (x*y/(1 - x*y))*exp(y/(1 - x*y)): ser := series(egf, y, 10):
poly := n -> convert(n!*expand(coeff(ser, y, n)), polynom):
row := n -> seq(coeff(poly(n), x, k), k = 0..n): seq(print(row(n)), n = 0..6);
CROSSREFS
Cf. A052852 (row sums), A317365 (alternating row sums), A000142 (main diagonal), A187535 (central column), A062119, A055303, A011379.
Sequence in context: A350266 A376724 A375470 * A244129 A363907 A342987
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 28 2023
STATUS
approved