login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361890
a(n) = S(7,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
7
1, 1, 2, 129, 2316, 94510, 4939220, 211106945, 14879165560, 828070125876, 61472962084968, 4223017425122958, 325536754765395096, 25399546083773839692, 2059386837863675003112, 173281152533121109073025, 14789443838781868027714800, 1307994690673355979749969800
OFFSET
0,3
COMMENTS
For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. The present sequence is {S(7,n)}. Gould (1974) conjectured that S(3,n) was always divisible by S(1,n). See A183069 for {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n).
a(n) is the total number of 7-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2). - Alois P. Heinz, Apr 02 2023
LINKS
H. W. Gould, Problem E2384, Amer. Math. Monthly, 81 (1974), 170-171.
FORMULA
a(n) = Sum_{k = 0..floor(n/2)} ( (n - 2*k + 1)/(n - k + 1) * binomial(n,k) )^7.
From Alois P. Heinz, Apr 02 2023: (Start)
a(n) = Sum_{j=0..floor(n/2)} A008315(n,j)^7.
a(n) = Sum_{j=0..n} A120730(n,j)^7.
a(n) = A357824(n,7). (End)
a(n) ~ 3 * 2^(7*n + 27/2) / (2401 * Pi^(7/2) * n^(13/2)). - Vaclav Kotesovec, Aug 27 2023
MAPLE
seq(add( ( binomial(n, k) - binomial(n, k-1) )^7, k = 0..floor(n/2)), n = 0..20);
MATHEMATICA
Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^7, {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 27 2023 *)
CROSSREFS
Cf. A003161 ( S(3,n) ), A003162 ( S(3,n)/S(1,n) ), A183069 ( S(3,2*n+1)/ S(1,2*n+1) ), A361887 ( S(5,n) ), A361888 ( S(5,n)/S(1,n) ), A361889 ( S(5,2*n-1)/S(1,2*n-1) ), A361891 ( S(7,n)/S(1,n) ), A361892 ( S(7,2*n-1)/ S(1,2*n-1) ).
Column k=7 of A357824.
Sequence in context: A342618 A258806 A216358 * A294274 A099824 A351916
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 30 2023
STATUS
approved