OFFSET
0,3
COMMENTS
For r a positive integer define S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. The present sequence is {S(5,n)}. Gould (1974) conjectured that S(3,n) was always divisible by S(1,n). See A183069 for {S(3,n)/S(1,n)}. In fact, calculation suggests that if r is odd then S(r,n) is always divisible by S(1,n).
a(n) is the total number of 5-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2). - Alois P. Heinz, Apr 02 2023
LINKS
H. W. Gould, Problem E2384, Amer. Math. Monthly, 81 (1974), 170-171.
FORMULA
a(n) = Sum_{k = 0..floor(n/2)} ( (n - 2*k + 1)/(n - k + 1) * binomial(n,k) )^5.
From Alois P. Heinz, Apr 02 2023: (Start)
a(n) = Sum_{j=0..floor(n/2)} A008315(n,j)^5.
a(n) = Sum_{j=0..n} A120730(n,j)^5.
a(n) = A357824(n,5). (End)
a(n) ~ 2^(5*n + 19/2) / (125 * Pi^(5/2) * n^(9/2)). - Vaclav Kotesovec, Aug 27 2023
MAPLE
seq(add( ( binomial(n, k) - binomial(n, k-1) )^5, k = 0..floor(n/2)), n = 0..20);
MATHEMATICA
Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^5, {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 27 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 28 2023
STATUS
approved