login
A183069
L.g.f.: Sum_{n>=1,k>=0} CATALAN(n,k)^2 * x^(n+k)/n = Sum_{n>=1} a(n)*x^n/n, where CATALAN(n,k) = n*C(n+2*k-1,k)/(n+k) is the coefficient of x^k in C(x)^n and C(x) is the g.f. of the Catalan numbers.
10
1, 3, 19, 163, 1626, 17769, 206487, 2508195, 31504240, 406214878, 5349255726, 71672186953, 974311431094, 13408623649893, 186491860191519, 2617716792257955, 37040913147928380, 527875569932002608, 7570657419156212256, 109194783587953243038
OFFSET
1,2
COMMENTS
Logarithmic derivative of A183070.
A bisection of A003162.
We conjecture that the sequence satisfies the supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for all primes p >= 5 and positive integers n and k. - Peter Bala, Mar 20 2023
LINKS
Pedro J. Miana, Hideyuki Ohtsuka, and Natalia Romero, Sums of powers of Catalan triangle numbers, arXiv:1602.04347 [math.NT], 2016.
FORMULA
a(n) = Sum_{k=0..n} (n-k)*C(n+k-1,k)^2/n for n>=1.
a(n) = Sum_{k=0..n-1} (C(2*n-1,k) - C(2*n-1,k-1))^3/C(2*n-1,n). [From a formula given in A003162 by Michael Somos.]
Recurrence: 2*n^2*(2*n-1)*(7*n^2 - 20*n + 14)*a(n) = (455*n^5 - 2427*n^4 + 4850*n^3 - 4406*n^2 + 1728*n - 216)*a(n-1) - 4*(n-2)*(2*n - 3)^2*(7*n^2 - 6*n + 1)*a(n-2). - Vaclav Kotesovec, Mar 06 2014
a(n) ~ 16^n/(9*Pi*n^2). - Vaclav Kotesovec, Mar 06 2014
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 19*x^3/3 + 163*x^4/4 + 1626*x^5/5 + ...
L(x) = (1 + x + 2^2*x^2 + 5^2*x^3 + 14^2*x^4 + ...)*x
+ (1 + 2^2*x + 5^2*x^2 + 14^2*x^3 + 42^2*x^4 + ...)*x^2/2
+ (1 + 3^2*x + 9^2*x^2 + 28^2*x^3 + 90^2*x^4 + ...)*x^3/3
+ (1 + 4^2*x + 14^2*x^2 + 48^2*x^3 + 165^2*x^4 + ...)*x^4/4
+ (1 + 5^2*x + 20^2*x^2 + 75^2*x^3 + 275^2*x^4 + ...)*x^5/5
+ (1 + 6^2*x + 27^2*x^2 + 110^2*x^3 + 429^2*x^4 + ...)*x^6/6 + ...
which consists of the squares of coefficients in the powers of C(x),
where C(x) = 1 + x*C(x)^2 is g.f. of the Catalan numbers.
...
Exponentiation yields the g.f. of A183070:
exp(L(x)) = 1 + x + 2*x^2 + 8*x^3 + 49*x^4 + 380*x^5 + 3400*x^6 + ...
MATHEMATICA
Table[Sum[(n-k)*Binomial[n+k-1, k]^2/n, {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 06 2014 *)
PROG
(PARI) {a(n)=if(n<1, 0, sum(k=0, n, (n-k)*binomial(n+k-1, k)^2/n))}
(PARI) {a(n)=sum(k=0, n, (binomial(2*n+1, k)-binomial(2*n+1, k-1))^3)/binomial(2*n+1, n)}
(Magma) [&+[(n-k)*Binomial(n+k-1, k)^2/n: k in [0..n]]: n in [1..30]]; // Vincenzo Librandi, Feb 16 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 23 2010
EXTENSIONS
a(19)-a(20) from Vincenzo Librandi, Feb 16 2016
STATUS
approved