login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294272
Sum of the fifth powers of the parts in the partitions of n into two parts.
1
0, 2, 33, 308, 1300, 4668, 12201, 30032, 61776, 123950, 220825, 389652, 630708, 1018808, 1539825, 2331968, 3347776, 4826682, 6657201, 9233300, 12333300, 16578452, 21571033, 28256208, 35970000, 46106918, 57617001, 72503732, 89176276, 110446800, 133987425
OFFSET
1,2
FORMULA
a(n) = Sum_{i=1..floor(n/2)} i^5 + (n-i)^5.
From Colin Barker, Nov 20 2017: (Start)
G.f.: x^2*(2 + 31*x + 263*x^2 + 806*x^3 + 1748*x^4 + 2046*x^5 + 1708*x^6 + 806*x^7 + 238*x^8 + 31*x^9 + x^10) / ((1 - x)^7*(1 + x)^6).
a(n) = (1/192)*(n^2*(-16 + 80*n^2 + 3*(-31 + (-1)^n)*n^3 + 32*n^4)).
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - 15*a(n-4) + 15*a(n-5) + 20*a(n-6) - 20*a(n-7) - 15*a(n-8) + 15*a(n-9) + 6*a(n-10) - 6*a(n-11) - a(n-12) + a(n-13) for n>13.
(End)
MATHEMATICA
Table[Sum[i^5 + (n - i)^5, {i, Floor[n/2]}], {n, 50}]
PROG
(PARI) concat(0, Vec(x^2*(2 + 31*x + 263*x^2 + 806*x^3 + 1748*x^4 + 2046*x^5 + 1708*x^6 + 806*x^7 + 238*x^8 + 31*x^9 + x^10) / ((1 - x)^7*(1 + x)^6) + O(x^40))) \\ Colin Barker, Nov 20 2017
CROSSREFS
Sequence in context: A030448 A093992 A361887 * A231595 A100023 A336969
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 26 2017
STATUS
approved