login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294274 Sum of the seventh powers of the parts in the partitions of n into two parts. 1
0, 2, 129, 2444, 18700, 99012, 376761, 1216688, 3297456, 8158550, 18080425, 37847532, 73399404, 136971464, 241561425, 414517952, 680856256, 1095977898, 1703414961, 2607286700, 3877286700, 5697862412, 8172733129, 11613390384, 16164030000, 22330294142 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for sequences related to partitions

Index entries for linear recurrences with constant coefficients, signature (1,8,-8,-28,28,56,-56,-70,70,56,-56,-28,28,8,-8,-1,1).

FORMULA

a(n) = Sum_{i=1..floor(n/2)} i^7 + (n-i)^7.

From Colin Barker, Nov 20 2017: (Start)

G.f.: x^2*(2 + 127*x + 2299*x^2 + 15240*x^3 + 61848*x^4 + 151257*x^5 + 262139*x^6 + 306832*x^7 + 260914*x^8 + 151257*x^9 + 60777*x^10 + 15240*x^11 + 2180*x^12 + 127*x^13+ x^14) / ((1 - x)^9*(1 + x)^8).

a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) - 28*a(n-4) + 28*a(n-5) + 56*a(n-6) - 56*a(n-7) - 70*a(n-8) + 70*a(n-9) + 56*a(n-10) - 56*a(n-11) - 28*a(n-12) + 28*a(n-13) + 8*a(n-14) - 8*a(n-15) - a(n-16) + a(n-17) for n>17.

(End)

MATHEMATICA

Table[Sum[i^7 + (n - i)^7, {i, Floor[n/2]}], {n, 40}]

PROG

(PARI) concat(0, Vec(x^2*(2 + 127*x + 2299*x^2 + 15240*x^3 + 61848*x^4 + 151257*x^5 + 262139*x^6 + 306832*x^7 + 260914*x^8 + 151257*x^9 + 60777*x^10 + 15240*x^11 + 2180*x^12 + 127*x^13+ x^14) / ((1 - x)^9*(1 + x)^8) + O(x^40))) \\ Colin Barker, Nov 20 2017

CROSSREFS

Sequence in context: A303377 A258806 A216358 * A099824 A300292 A259109

Adjacent sequences:  A294271 A294272 A294273 * A294275 A294276 A294277

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Oct 26 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 06:23 EDT 2020. Contains 333392 sequences. (Running on oeis4.)