login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294271 Sum of the fourth powers of the parts in the partitions of n into two parts. 1
0, 2, 17, 114, 354, 1060, 2275, 4932, 8772, 15958, 25333, 41270, 60710, 91672, 127687, 182408, 243848, 333930, 432345, 572666, 722666, 931788, 1151403, 1451980, 1763020, 2182206, 2610621, 3180478, 3756718, 4514624, 5273999, 6263056, 7246096, 8515538, 9768353 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for sequences related to partitions

Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).

FORMULA

a(n) = Sum_{i=1..floor(n/2)} i^4 + (n-i)^4.

From Colin Barker, Nov 20 2017: (Start)

G.f.: x^2*(2 + 15*x + 87*x^2 + 165*x^3 + 241*x^4 + 165*x^5 + 77*x^6 + 15*x^7 + x^8) / ((1 - x)^6*(1 + x)^5).

a(n) = (1/480)*(n*(-16 + 160*n^2 + 15*(-15 + (-1)^n)*n^3 + 96*n^4)).

a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11) for n>11.

(End)

MATHEMATICA

Table[Sum[i^4 + (n - i)^4, {i, Floor[n/2]}], {n, 60}]

Table[Total[Flatten[IntegerPartitions[n, {2}]]^4], {n, 40}] (* Harvey P. Dale, Mar 01 2019 *)

PROG

(PARI) concat(0, Vec(x^2*(2 + 15*x + 87*x^2 + 165*x^3 + 241*x^4 + 165*x^5 + 77*x^6 + 15*x^7 + x^8) / ((1 - x)^6*(1 + x)^5) + O(x^40))) \\ Colin Barker, Nov 20 2017

(PARI) a(n) = sum(i=1, n\2, i^4 + (n-i)^4); \\ Michel Marcus, Nov 20 2017

CROSSREFS

Sequence in context: A213785 A198158 A203247 * A203123 A198043 A037747

Adjacent sequences:  A294268 A294269 A294270 * A294272 A294273 A294274

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Oct 26 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 29 05:09 EST 2022. Contains 350672 sequences. (Running on oeis4.)