login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294273 Sum of the sixth powers of the parts in the partitions of n into two parts. 1
0, 2, 65, 858, 4890, 21244, 67171, 188916, 446964, 994030, 1978405, 3796622, 6735950, 11680408, 19092295, 30745064, 47260136, 71929146, 105409929, 153455810, 216455810, 303993492, 415601835, 566623708, 754740700, 1003708134, 1307797101, 1702747126 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for sequences related to partitions

Index entries for linear recurrences with constant coefficients, signature (1,7,-7,-21,21,35,-35,-35,35,21,-21,-7,7,1,-1).

FORMULA

a(n) = Sum_{i=1..floor(n/2)} i^6 + (n-i)^6.

From Colin Barker, Nov 20 2017: (Start)

G.f.: x^2*(2 + 63*x + 779*x^2 + 3591*x^3 + 10845*x^4 + 19026*x^5 + 23850*x^6 + 19026*x^7 + 10600*x^8 + 3591*x^9 + 723*x^10 + 63*x^11 + x^12) / ((1 - x)^8*(1 + x)^7).

a(n) = (n/42 - n^3/6 + n^5/2 + 1/128*(-63 + (-1)^n)*n^6 + n^7/7).

a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) - 21*a(n-4) + 21*a(n-5) + 35*a(n-6) - 35*a(n-7) - 35*a(n-8) + 35*a(n-9) + 21*a(n-10) - 21*a(n-11) - 7*a(n-12) + 7*a(n-13) + a(n-14) - a(n-15) for n>15.

(End)

MATHEMATICA

Table[Sum[i^6 + (n - i)^6, {i, Floor[n/2]}], {n, 50}]

PROG

(PARI) concat(0, Vec(x^2*(2 + 63*x + 779*x^2 + 3591*x^3 + 10845*x^4 + 19026*x^5 + 23850*x^6 + 19026*x^7 + 10600*x^8 + 3591*x^9 + 723*x^10 + 63*x^11 + x^12) / ((1 - x)^8*(1 + x)^7) + O(x^40))) \\ Colin Barker, Nov 20 2017

CROSSREFS

Sequence in context: A342608 A294179 A002604 * A199145 A198665 A185029

Adjacent sequences:  A294270 A294271 A294272 * A294274 A294275 A294276

KEYWORD

nonn,easy

AUTHOR

Wesley Ivan Hurt, Oct 26 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 04:49 EST 2021. Contains 349469 sequences. (Running on oeis4.)