The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185029 O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n * A(n^4*x)^n/n! * exp(-n*x*A(n^4*x)). 2
 1, 1, 2, 65, 3524, 1364432, 1445333132, 7913299718555, 162327934705456532, 14083866155101076361024, 5251111824344114834186373747, 7956883819596423111541696080219295, 51760975171209084256721290749117849746987, 1424616119143714906580708999710589586791029920856 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare to the LambertW identity: Sum_{n>=0} n^n * x^n * G(x)^n/n! * exp(-n*x*G(x)) = 1/(1 - x*G(x)). LINKS Table of n, a(n) for n=0..13. EXAMPLE O.g.f.: A(x) = 1 + x + 2*x^2 + 65*x^3 + 3524*x^4 + 1364432*x^5 +... where A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^2*x^2*A(2^4*x)^2/2!*exp(-2*x*A(2^4*x)) + 3^3*x^3*A(3^4*x)^3/3!*exp(-3*x*A(3^4*x)) + 4^4*x^4*A(4^4*x)^4/4!*exp(-4*x*A(4^4*x)) + 5^5*x^5*A(5^4*x)^5/5!*exp(-5*x*A(5^4*x)) +... simplifies to a power series in x with integer coefficients. PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, k^k*x^k*subst(A, x, k^4*x)^k/k!*exp(-k*x*subst(A, x, k^4*x)+x*O(x^n)))); polcoeff(A, n)} for(n=0, 16, print1(a(n), ", ")) CROSSREFS Cf. A218672, A218681, A219342. Sequence in context: A294273 A199145 A198665 * A228081 A214366 A220596 Adjacent sequences: A185026 A185027 A185028 * A185030 A185031 A185032 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)