login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219342 O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n * A(n^3*x)^n/n! * exp(-n*x*A(n^3*x)). 3
1, 1, 2, 33, 939, 101175, 26230876, 21032800086, 48319626581926, 319633065306440005, 6299181667747767151873, 359980854813102654362716667, 60552379844778585329083453881153, 30125614945616982039421647789900799744, 43971297878008421196972637327280065832735828 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare to the LambertW identity:

Sum_{n>=0} n^n * x^n * G(x)^n/n! * exp(-n*x*G(x)) = 1/(1 - x*G(x)).

LINKS

Table of n, a(n) for n=0..14.

EXAMPLE

O.g.f.: A(x) = 1 + x + 2*x^2 + 33*x^3 + 939*x^4 + 101175*x^5 + 26230876*x^6 +...

where

A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^2*x^2*A(2^3*x)^2/2!*exp(-2*x*A(2^3*x)) + 3^3*x^3*A(3^3*x)^3/3!*exp(-3*x*A(3^3*x)) + 4^4*x^4*A(4^3*x)^4/4!*exp(-4*x*A(4^3*x)) + 5^5*x^5*A(5^3*x)^5/5!*exp(-5*x*A(5^3*x)) +...

simplifies to a power series in x with integer coefficients.

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, k^k*x^k*subst(A, x, k^3*x)^k/k!*exp(-k*x*subst(A, x, k^3*x)+x*O(x^n)))); polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A218672, A218681, A185029, A219343, A217900.

Sequence in context: A093752 A045984 A077657 * A256278 A204239 A198901

Adjacent sequences:  A219339 A219340 A219341 * A219343 A219344 A219345

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 18 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 15:47 EDT 2021. Contains 347598 sequences. (Running on oeis4.)