The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228081 a(n) = 64^n + 1. 12
 2, 65, 4097, 262145, 16777217, 1073741825, 68719476737, 4398046511105, 281474976710657, 18014398509481985, 1152921504606846977, 73786976294838206465, 4722366482869645213697, 302231454903657293676545, 19342813113834066795298817, 1237940039285380274899124225 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS These numbers can be written as the sum of two relatively prime squares and also as the sum of two relatively prime cubes (i.e., 2^(6*n) + 1 = (2^(3*n))^2 + 1^2 = (2^(2*n))^3 + 1^3). LINKS Arkadiusz Wesolowski, Table of n, a(n) for n = 0..100 Index entries for sequences related to sums of cubes Index entries for sequences related to sums of squares Index entries for linear recurrences with constant coefficients, signature (65,-64). FORMULA a(n) = 64*a(n-1) - 63. a(n) = A089357(n) + 1 = 2^A008588(n) + 1. G.f.: (2 - 65*x)/((1 - x)*(1 - 64*x)). E.g.f.: e^x + e^(64*x). EXAMPLE a(2) = 64^2 + 1 = 4097. MATHEMATICA Table[64^n + 1, {n, 0, 15}] LinearRecurrence[{65, -64}, {2, 65}, 20] (* Harvey P. Dale, Jul 17 2020 *) PROG (Magma) [64^n+1 : n in [0..15]] (PARI) for(n=0, 15, print1(64^n+1, ", ")) CROSSREFS Cf. A000051 (2^n + 1), A052539 (4^n + 1), A062395 (8^n + 1). Sequence in context: A199145 A198665 A185029 * A214366 A220596 A326253 Adjacent sequences: A228078 A228079 A228080 * A228082 A228083 A228084 KEYWORD easy,nonn AUTHOR Arkadiusz Wesolowski, Aug 09 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 13:22 EDT 2024. Contains 372755 sequences. (Running on oeis4.)