OFFSET
0,2
COMMENTS
Although limit( a(n)^(1/n), n=infinity ) = 5^5, apparently this sequence is not a Hausdorff moment sequence of any positive function on (0,5^5).
FORMULA
In Maple notation:
O.g.f. : hypergeom([3/5, 4/5, 6/5, 7/5], [1, 1, 1], 5^5*z);
E.g.f. : hypergeom([3/5, 4/5, 6/5, 7/5], [1, 1, 1, 1], 5^5*z);
Asymptotics: a(n) -> (25*n^2+5*n-2)*(5^(5*n+1/2))* n^(-2)/(8*Pi^2), for n -> infinity.
D-finite with recurrence (n^4)*a(n) -5*(5*n+1)*(5*n+2)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Jul 27 2022
MAPLE
seq((5*n+2)!/(2*(n!)^5), n=0..11).
MATHEMATICA
Table[(5n+2)!/(2(n!)^5), {n, 0, 15}] (* Harvey P. Dale, Aug 04 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson, Aug 09 2013
STATUS
approved