login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228080
(5*n+2)!/(2*(n!)^5), n >= 0.
0
1, 2520, 7484400, 22870848000, 70579794285000, 218799620836917120, 679953587124305894400, 2116187746296592370688000, 6592431144164903462359935000, 20550499897066845200729434200000, 64091912654977017603465324370118400, 199956261330234671205699024876891648000
OFFSET
0,2
COMMENTS
Although limit( a(n)^(1/n), n=infinity ) = 5^5, apparently this sequence is not a Hausdorff moment sequence of any positive function on (0,5^5).
FORMULA
In Maple notation:
O.g.f. : hypergeom([3/5, 4/5, 6/5, 7/5], [1, 1, 1], 5^5*z);
E.g.f. : hypergeom([3/5, 4/5, 6/5, 7/5], [1, 1, 1, 1], 5^5*z);
Asymptotics: a(n) -> (25*n^2+5*n-2)*(5^(5*n+1/2))* n^(-2)/(8*Pi^2), for n -> infinity.
D-finite with recurrence (n^4)*a(n) -5*(5*n+1)*(5*n+2)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Jul 27 2022
MAPLE
seq((5*n+2)!/(2*(n!)^5), n=0..11).
MATHEMATICA
Table[(5n+2)!/(2(n!)^5), {n, 0, 15}] (* Harvey P. Dale, Aug 04 2019 *)
CROSSREFS
Cf. A002544.
Sequence in context: A107531 A123485 A282433 * A172553 A172580 A172684
KEYWORD
nonn
AUTHOR
Karol A. Penson, Aug 09 2013
STATUS
approved