login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(5*n+2)!/(2*(n!)^5), n >= 0.
0

%I #15 Jul 27 2022 08:36:01

%S 1,2520,7484400,22870848000,70579794285000,218799620836917120,

%T 679953587124305894400,2116187746296592370688000,

%U 6592431144164903462359935000,20550499897066845200729434200000,64091912654977017603465324370118400,199956261330234671205699024876891648000

%N (5*n+2)!/(2*(n!)^5), n >= 0.

%C Although limit( a(n)^(1/n), n=infinity ) = 5^5, apparently this sequence is not a Hausdorff moment sequence of any positive function on (0,5^5).

%F In Maple notation:

%F O.g.f. : hypergeom([3/5, 4/5, 6/5, 7/5], [1, 1, 1], 5^5*z);

%F E.g.f. : hypergeom([3/5, 4/5, 6/5, 7/5], [1, 1, 1, 1], 5^5*z);

%F Asymptotics: a(n) -> (25*n^2+5*n-2)*(5^(5*n+1/2))* n^(-2)/(8*Pi^2), for n -> infinity.

%F D-finite with recurrence (n^4)*a(n) -5*(5*n+1)*(5*n+2)*(5*n-2)*(5*n-1)*a(n-1)=0. - _R. J. Mathar_, Jul 27 2022

%p seq((5*n+2)!/(2*(n!)^5), n=0..11).

%t Table[(5n+2)!/(2(n!)^5),{n,0,15}] (* _Harvey P. Dale_, Aug 04 2019 *)

%Y Cf. A002544.

%K nonn

%O 0,2

%A _Karol A. Penson_, Aug 09 2013