Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jul 30 2023 17:45:42
%S 1,0,1,0,2,2,0,3,12,6,0,4,36,72,24,0,5,80,360,480,120,0,6,150,1200,
%T 3600,3600,720,0,7,252,3150,16800,37800,30240,5040,0,8,392,7056,58800,
%U 235200,423360,282240,40320,0,9,576,14112,169344,1058400,3386880,5080320,2903040,362880
%N Triangle read by rows. T(n, k) = n! * binomial(n - 1, k - 1) / (n - k)!.
%F T(n, k) = k! * binomial(n, k) * binomial(n - 1, k - 1).
%F T(n + 1, k + 1) / (n + 1) = A144084(n, k) = (-1)^(n - k)*A021010(n, k).
%F T(n, k) = [x^k] n! * ([y^n](1 + (x*y / (1 - x*y)) * exp(y / (1 - x*y)))).
%e Triangle T(n, k) starts:
%e [0] 1;
%e [1] 0, 1;
%e [2] 0, 2, 2;
%e [3] 0, 3, 12, 6;
%e [4] 0, 4, 36, 72, 24;
%e [5] 0, 5, 80, 360, 480, 120;
%e [6] 0, 6, 150, 1200, 3600, 3600, 720;
%e [7] 0, 7, 252, 3150, 16800, 37800, 30240, 5040;
%e [8] 0, 8, 392, 7056, 58800, 235200, 423360, 282240, 40320;
%e [9] 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880;
%p A361893 := (n, k) -> n!*binomial(n - 1, k - 1)/(n - k)!:
%p seq(seq(A361893(n,k), k = 0..n), n = 0..9);
%p # Using the egf.:
%p egf := 1 + (x*y/(1 - x*y))*exp(y/(1 - x*y)): ser := series(egf, y, 10):
%p poly := n -> convert(n!*expand(coeff(ser, y, n)), polynom):
%p row := n -> seq(coeff(poly(n), x, k), k = 0..n): seq(print(row(n)), n = 0..6);
%Y Cf. A052852 (row sums), A317365 (alternating row sums), A000142 (main diagonal), A187535 (central column), A062119, A055303, A011379.
%Y Cf. A144084, A021010.
%K nonn,tabl
%O 0,5
%A _Peter Luschny_, Mar 28 2023