Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Jan 14 2021 17:35:32
%S 1,0,1,0,2,2,0,3,9,5,0,4,30,40,15,0,5,90,220,185,52,0,6,255,1040,1485,
%T 906,203,0,7,693,4550,9905,9891,4718,877,0,8,1820,19040,59850,87416,
%U 66808,26104,4140,0,9,4644,77448,341082,686826,750120,463212,153063,21147
%N Triangle T(n,k) = number of forests of labeled rooted trees of height at most 1, with n labels, k of which are used for root nodes and any root may contain >= 1 labels, n >= 0, 0<=k<=n.
%H Alois P. Heinz, <a href="/A143396/b143396.txt">Rows n = 0..140, flattened</a>
%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F T(n,k) = C(n,k) * Sum_{t=0..k} Stirling2(k,t) * t^(n-k).
%F E.g.f.: exp(exp(x)*(exp(x*y)-1)). - _Vladeta Jovovic_, Dec 08 2008
%e T(3,2) = 9: {1,2}<-3, {1,3}<-2, {2,3}<-1, {1}<-3{2}, {1}{2}<-3, {1}<-2{3}, {1}{3}<-2, {2}<-1{3}, {2}{3}<-1.
%e Triangle begins:
%e 1;
%e 0, 1;
%e 0, 2, 2;
%e 0, 3, 9, 5;
%e 0, 4, 30, 40, 15;
%e 0, 5, 90, 220, 185, 52;
%e ...
%p T:= (n, k)-> binomial(n, k)*add(Stirling2(k, t)*t^(n-k), t=0..k):
%p seq(seq(T(n, k), k=0..n), n=0..11);
%t T[n_, k_] := T[n, k] = Binomial[n, k]*Sum[StirlingS2[k, t]*If[n == k, 1, t^(n - k)], {t, 0, k}];
%t Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 27 2016, translated from Maple, updated Jan 01 2021 *)
%Y Columns k=0-10 give: A000007, A000027, A273652, A273653, A273654, A273655, A273656, A273657, A273658, A273659, A273660.
%Y Diagonal gives A000110.
%Y Row sums give A143405.
%Y T(2n,n) gives A273661.
%Y Cf. A048993, A008277, A007318.
%K nonn,tabl
%O 0,5
%A _Alois P. Heinz_, Aug 12 2008