login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189072
Semiprimes in A007504 (the sum of first n primes).
5
10, 58, 77, 129, 381, 501, 791, 1371, 1851, 2127, 2427, 2747, 3831, 4227, 4661, 6081, 6338, 7141, 7418, 9206, 9523, 11599, 12718, 15537, 20059, 20546, 21037, 26369, 27517, 29897, 34915, 36227, 45434, 47721, 48494, 49281, 50887, 51698, 52519, 54169, 57547
OFFSET
1,1
COMMENTS
a(n) = A007504(k(n)), values of k(n) = 3, 7, 8, 10, 16, 18, 22, 28, 32, 34, 36, 38, 44, 46, 48, 54, 55, 58, 59, 65, 66, 72, 75, 82, 92, 93, 94, 104, 106, 110, 118, 120, 133, 136, 137, 138, 140, 141, 142, 144, 148, 150, 154, 156, 164, 168, 170, 174, 190, 194, 202, 210, 212, 218, 224, 226, 232, 234, 236, 244, 246, 249, 250, 256, 264, 272, 276, 277, 286, 294, 298, 300.
Intersection of A007504 and A001358. - Robert Israel, Jun 23 2017
LINKS
EXAMPLE
10 = 2*5 = A007504(3), 58 = 2*29 = A007504(7), 77 = 7*11 = A007504(8).
MAPLE
PS:= ListTools:-PartialSums(select(isprime, [2, seq(i, i=3..10^4, 2)])):
select(numtheory:-bigomega = 2, PS); # Robert Israel, Jun 23 2017
MATHEMATICA
semiPrimeQ[n_Integer] := Total[FactorInteger[n]][[2]] == 2; Select[Accumulate[Prime[Range[100]]], semiPrimeQ] (* T. D. Noe, Apr 20 2011 *)
With[{nn=200}, Select[Accumulate[Prime[Range[nn]]], PrimeOmega[#]==2&]] (* Harvey P. Dale, Dec 22 2018 *)
PROG
(PARI) {a=0; s=[]; forprime(p=2, 10^4, 2==bigomega(a=a+p)&s=concat(s, a)); s}
CROSSREFS
Cf. A013918 (primes in A007504).
Sequence in context: A024133 A229074 A103417 * A189417 A060157 A055583
KEYWORD
nonn
AUTHOR
Zak Seidov, Apr 16 2011
STATUS
approved