login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Semiprimes in A007504 (the sum of first n primes).
5

%I #15 Dec 22 2018 12:21:22

%S 10,58,77,129,381,501,791,1371,1851,2127,2427,2747,3831,4227,4661,

%T 6081,6338,7141,7418,9206,9523,11599,12718,15537,20059,20546,21037,

%U 26369,27517,29897,34915,36227,45434,47721,48494,49281,50887,51698,52519,54169,57547

%N Semiprimes in A007504 (the sum of first n primes).

%C a(n) = A007504(k(n)), values of k(n) = 3, 7, 8, 10, 16, 18, 22, 28, 32, 34, 36, 38, 44, 46, 48, 54, 55, 58, 59, 65, 66, 72, 75, 82, 92, 93, 94, 104, 106, 110, 118, 120, 133, 136, 137, 138, 140, 141, 142, 144, 148, 150, 154, 156, 164, 168, 170, 174, 190, 194, 202, 210, 212, 218, 224, 226, 232, 234, 236, 244, 246, 249, 250, 256, 264, 272, 276, 277, 286, 294, 298, 300.

%C Intersection of A007504 and A001358. - _Robert Israel_, Jun 23 2017

%H Robert Israel, <a href="/A189072/b189072.txt">Table of n, a(n) for n = 1..10000</a>

%e 10 = 2*5 = A007504(3), 58 = 2*29 = A007504(7), 77 = 7*11 = A007504(8).

%p PS:= ListTools:-PartialSums(select(isprime, [2,seq(i,i=3..10^4,2)])):

%p select(numtheory:-bigomega = 2, PS); # _Robert Israel_, Jun 23 2017

%t semiPrimeQ[n_Integer] := Total[FactorInteger[n]][[2]] == 2; Select[Accumulate[Prime[Range[100]]], semiPrimeQ] (* _T. D. Noe_, Apr 20 2011 *)

%t With[{nn=200},Select[Accumulate[Prime[Range[nn]]],PrimeOmega[#]==2&]] (* _Harvey P. Dale_, Dec 22 2018 *)

%o (PARI) {a=0;s=[];forprime(p=2,10^4,2==bigomega(a=a+p)&s=concat(s,a));s}

%Y Cf. A013918 (primes in A007504).

%Y Cf. A007504, A001358.

%K nonn

%O 1,1

%A _Zak Seidov_, Apr 16 2011