login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060157
Number of permutations of [n] with 3 sequences.
2
0, 10, 58, 236, 836, 2766, 8814, 27472, 84472, 257522, 780770, 2358708, 7108908, 21392278, 64307926, 193185944, 580082144, 1741295034, 5225982282, 15682141180, 47054812180, 141181213790, 423577195838, 1270798696416
OFFSET
3,2
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
FORMULA
a(n) = 11/2 - n - 2^(n+1) + (1/2)*3^n.
G.f.: 2*x^4*(5-6*x)/((1-x)^2*(1-2*x)*(1-3*x)). - Colin Barker, Feb 17 2012
EXAMPLE
a(4)=10 because each of the 5 (=A000111(4)) up-down permutations and 5 down-up permutations has 3 sequences. For example, the 3 sequences of 2413 are 24, 41, and 13. - Emeric Deutsch, Jul 11 2009
MAPLE
n3 := n->11/2-n-2^(n+1)+1/2*3^n; seq(n3(i), i=3..30);
MATHEMATICA
Table[11/2-n-2^(n+1)+3^n/2, {n, 3, 30}]
PROG
(PARI) { for (n=3, 200, write("b060157.txt", n, " ", (3^n + 11)/2 - 2^(n + 1) - n); ) } \\ Harry J. Smith, Jul 02 2009
CROSSREFS
Cf. A000111. - Emeric Deutsch, Jul 11 2009
Sequence in context: A103417 A189072 A189417 * A055583 A242202 A125320
KEYWORD
nonn,easy
AUTHOR
Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001
STATUS
approved