login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [n] with 3 sequences.
2

%I #18 Jul 23 2019 08:09:41

%S 0,10,58,236,836,2766,8814,27472,84472,257522,780770,2358708,7108908,

%T 21392278,64307926,193185944,580082144,1741295034,5225982282,

%U 15682141180,47054812180,141181213790,423577195838,1270798696416

%N Number of permutations of [n] with 3 sequences.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.

%H Harry J. Smith, <a href="/A060157/b060157.txt">Table of n, a(n) for n = 3..200</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,-17,17,-6).

%F a(n) = 11/2 - n - 2^(n+1) + (1/2)*3^n.

%F G.f.: 2*x^4*(5-6*x)/((1-x)^2*(1-2*x)*(1-3*x)). - _Colin Barker_, Feb 17 2012

%e a(4)=10 because each of the 5 (=A000111(4)) up-down permutations and 5 down-up permutations has 3 sequences. For example, the 3 sequences of 2413 are 24, 41, and 13. - _Emeric Deutsch_, Jul 11 2009

%p n3 := n->11/2-n-2^(n+1)+1/2*3^n; seq(n3(i),i=3..30);

%t Table[11/2-n-2^(n+1)+3^n/2,{n,3,30}]

%o (PARI) { for (n=3, 200, write("b060157.txt", n, " ", (3^n + 11)/2 - 2^(n + 1) - n); ) } \\ _Harry J. Smith_, Jul 02 2009

%Y Cf. A028399, A060158.

%Y Cf. A000111. - _Emeric Deutsch_, Jul 11 2009

%K nonn,easy

%O 3,2

%A Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Mar 12 2001