login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060160
a(n) = 2^n - 1 + Fibonacci(n-1)*2^(n+1).
2
1, 11, 23, 79, 223, 703, 2175, 6911, 22015, 70655, 227327, 733183, 2367487, 7651327, 24739839, 80019455, 258867199, 837550079, 2710044671, 8769241087, 28376563711, 91825897471, 297149661183, 961586135039, 3111737360383, 10069752152063
OFFSET
1,2
FORMULA
From R. J. Mathar, Feb 06 2010: (Start)
a(n) = 5*a(n-1) - 4*a(n-2) - 8*a(n-3) + 8*a(n-4).
G.f.: x*(1+6*x-28*x^2+16*x^3)/ ((1-x) * (2*x-1) * (4*x^2+2*x-1)). (End)
MAPLE
with(combinat, fibonacci): seq(2^n - 1 + fibonacci(n - 1)*2^(n+1), n=1..25);
MATHEMATICA
Table[2^n-1+Fibonacci[n-1]2^(n+1), {n, 30}] (* or *) LinearRecurrence[{5, -4, -8, 8}, {1, 11, 23, 79}, 30] (* Harvey P. Dale, Dec 19 2021 *)
PROG
(PARI) a(n) = { 2^n - 1 + fibonacci(n - 1)*2^(n + 1) } \\ Harry J. Smith, Jul 02 2009
CROSSREFS
Cf. A060161, A000045 (Fibonacci).
Sequence in context: A195463 A104066 A184394 * A241973 A158021 A239638
KEYWORD
nonn,changed
AUTHOR
Pieter Gosselink (pieter_gosselink(AT)lotus.com), Mar 12 2001
EXTENSIONS
More terms from Asher Auel, Mar 16 2001
STATUS
approved