login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239638
Numbers n such that the semiprime 2^n-1 is divisible by 2n+1.
1
11, 23, 83, 131, 3359, 130439, 406583
OFFSET
1,1
COMMENTS
All terms are primes == 5 modulo 6 (A005384 Sophie Germain primes).
a(8) >= 500000. - Max Alekseyev, May 28 2022
EXAMPLE
n = 11, 2^n -1 = 2047 = 23*89,
n = 23, 8388607 = 47*178481,
n = 131, 2722258935367507707706996859454145691647 = 263*10350794431055162386718619237468234569.
MATHEMATICA
Select[Range[4000], PrimeQ[2*# + 1] && PowerMod[2, #, 2*# + 1] == 1 &&
PrimeQ[(2^# - 1)/(2*# + 1)] &] (* Giovanni Resta, Mar 23 2014 *)
PROG
(PARI) is(n)=n%6==5 && Mod(2, 2*n+1)^n==1 && isprime(2*n+1) && ispseudoprime((2^n-1)/(2*n+1)) \\ Charles R Greathouse IV, Aug 25 2016
(Python)
from sympy import isprime, nextprime
A239638_list, p = [], 5
while p < 10**6:
if (p % 6) == 5:
n = (p-1)//2
if pow(2, n, p) == 1 and isprime((2**n-1)//p):
A239638_list.append(n)
p = nextprime(p) # Chai Wah Wu, Jun 05 2019
KEYWORD
nonn,more
AUTHOR
Zak Seidov, Mar 23 2014
EXTENSIONS
a(5)-a(6) from Giovanni Resta, Mar 23 2014
a(7) from Eric Chen, added by Max Alekseyev, May 21 2022
STATUS
approved