

A241973


Prime exponents of composite Mersenne numbers in the order of the magnitude of the smallest prime factor.


0



11, 23, 83, 37, 29, 131, 179, 191, 43, 73, 239, 251, 359, 419, 431, 443, 491, 659, 683, 233, 719, 743, 911, 1019, 1031, 1103, 47, 397, 1223, 79, 461, 1439, 1451, 1499, 1511, 1559, 1583, 557, 113, 577, 601, 1811, 1931, 2003, 2039, 2063, 761, 2339, 2351, 2399
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Terms are the same as A054723, but in a different order.
If p is a prime and 2^p1 is composite, each prime factor of 2^p1 will be of the form kp+1 for some integer k. Thus, the smallest prime factor of 2^p1 cannot be smaller than p.
The corresponding smallest prime factors are: 23, 47, 167, 223, 233, 263, 359, 383, 431, 439, 479, 503, 719, 839, 863, 887, 983, ....


LINKS

Table of n, a(n) for n=1..50.


EXAMPLE

83 comes before 37 because 167 (the smallest prime factor of 2^831) < 223 (the smallest prime factor of 2^371).


PROG

(PARI) lista() = {vi = readvec("b054723.txt"); vm = vector(#vi, i, 2^vi[i]1); p = 2; nbf = 0; while ( nbf != #vm, i = 1; while (!(i>#vm) && (!vm[i]  (vm[i] % p)), i++); if (i <= #vm, print1(vi[i], ", "); vm[i] = 0; nbf ++; ); p = nextprime(p+1); ); } \\ Michel Marcus, May 14 2014


CROSSREFS

Cf. A054723, A136030.
Sequence in context: A104066 A184394 A060160 * A158021 A239638 A050767
Adjacent sequences: A241970 A241971 A241972 * A241974 A241975 A241976


KEYWORD

nonn


AUTHOR

J. Lowell, May 03 2014


EXTENSIONS

More terms from Michel Marcus, May 14 2014


STATUS

approved



