|
|
A046051
|
|
Number of prime factors of Mersenne number M(n) = 2^n - 1 (counted with multiplicity).
|
|
42
|
|
|
0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 2, 5, 1, 3, 3, 4, 1, 6, 1, 6, 4, 4, 2, 7, 3, 3, 3, 6, 3, 7, 1, 5, 4, 3, 4, 10, 2, 3, 4, 8, 2, 8, 3, 7, 6, 4, 3, 10, 2, 7, 5, 7, 3, 9, 6, 8, 4, 6, 2, 13, 1, 3, 7, 7, 3, 9, 2, 7, 4, 9, 3, 14, 3, 5, 7, 7, 4, 8, 3, 10, 6, 5, 2, 14, 3, 5, 6, 10, 1, 13, 5, 9, 3, 6, 5, 13, 2, 5, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Length of row n of A001265.
|
|
LINKS
|
Sean A. Irvine, Table of n, a(n) for n = 1..1206 (terms 1..500 from T. D. Noe)
J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
Alex Kontorovich, Jeff Lagarias, On Toric Orbits in the Affine Sieve, arXiv:1808.03235 [math.NT], 2018.
R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2018.
S. S. Wagstaff, Jr., The Cunningham Project
Eric Weisstein's World of Mathematics, Mersenne Number
|
|
FORMULA
|
Mobius transform of A085021. - T. D. Noe, Jun 19 2003
a(n) = A001222(A000225(n)). - Michel Marcus, Jun 06 2019
|
|
EXAMPLE
|
a(4) = 2 because 2^4 - 1 = 15 = 3*5.
From Gus Wiseman, Jul 04 2019: (Start)
The sequence of Mersenne numbers together with their prime indices begins:
1: {}
3: {2}
7: {4}
15: {2,3}
31: {11}
63: {2,2,4}
127: {31}
255: {2,3,7}
511: {4,21}
1023: {2,5,11}
2047: {9,24}
4095: {2,2,3,4,6}
8191: {1028}
16383: {2,14,31}
32767: {4,11,36}
65535: {2,3,7,55}
131071: {12251}
262143: {2,2,2,4,8,21}
524287: {43390}
1048575: {2,3,3,5,11,13}
(End)
|
|
MAPLE
|
with(numtheory): P:=proc(n) local a, k; a:=ifactors(2^n-1)[2];
add(a[k][2], k=1..nops(a)); end: seq(P(i), i=1..99); # Paolo P. Lava, Jul 18 2018
|
|
MATHEMATICA
|
a[q_] := Module[{x, n}, x=FactorInteger[2^n-1]; n=Length[x]; Sum[Table[x[i]][2]], {i, n}][j]], {j, n}]]
a[n_Integer] := PrimeOmega[2^n - 1]; Table[a[n], {n, 200}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
|
|
PROG
|
(PARI) a(n)=bigomega(2^n-1) \\ Charles R Greathouse IV, Apr 01 2013
|
|
CROSSREFS
|
Cf. A000043, A000668, A001348, A054988, A054989, A054990, A054991, A054992, A057951-A057958, A085021.
Cf. A000225, A001221, A001222, A046800, A049093, A059305, A325610, A325611, A325612, A325625.
Sequence in context: A032741 A319149 A321887 * A025812 A263001 A109698
Adjacent sequences: A046048 A046049 A046050 * A046052 A046053 A046054
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Eric W. Weisstein
|
|
STATUS
|
approved
|
|
|
|