OFFSET
1,4
COMMENTS
The smallest k! with n prime factors occurs for n in A060250.
103!+1 = 27437*31084943*C153, so a(103) is unknown until this 153-digit composite is factored. a(104) = 4 and a(105) = 6. - Rick L. Shepherd, Jun 10 2003
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..139
Hisanori Mishima, Factorizations of many number sequences
Hisanori Mishima, Factorizations of many number sequences
R. G. Wilson v, Explicit factorizations
Paul Leyland, Factors of n!+1.
EXAMPLE
a(2)=2 because 4! + 1 = 25 = 5*5
MATHEMATICA
a[q_] := Module[{x, n}, x=FactorInteger[q!+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
A054990[n_Integer] := PrimeOmega[n! + 1]; Table[A054990[n], {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
PROG
(PARI) for(n=1, 64, print1(bigomega(n!+1), ", "))
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Arne Ring (arne.ring(AT)epost.de), May 30 2000
EXTENSIONS
More terms from Robert G. Wilson v, Mar 23 2001
More terms from Rick L. Shepherd, Jun 10 2003
STATUS
approved