login
A054992
Number of prime factors of 2^n + 1 (counted with multiplicity).
29
1, 1, 2, 1, 2, 2, 2, 1, 4, 3, 2, 2, 2, 3, 4, 1, 2, 4, 2, 2, 4, 3, 2, 3, 4, 4, 6, 2, 3, 6, 2, 2, 5, 4, 5, 4, 3, 4, 4, 2, 3, 6, 2, 3, 7, 5, 3, 3, 3, 7, 6, 3, 3, 6, 6, 3, 5, 3, 4, 4, 2, 5, 7, 2, 6, 6, 3, 4, 5, 7, 3, 5, 3, 5, 7, 4, 6, 10, 2, 3, 10, 5, 6, 5, 4, 5, 5, 4, 4, 11, 6, 2, 5, 4, 5, 3, 5, 6, 9, 6, 2, 9, 3
OFFSET
1,3
COMMENTS
The length of row n in A001269.
FORMULA
a(n) = A046051(2n) - A046051(n). - T. D. Noe, Jun 18 2003
a(n) = A001222(A000051(n)). - Amiram Eldar, Oct 04 2019
EXAMPLE
a(3) = 2 because 2^3 + 1 = 9 = 3*3.
MATHEMATICA
a[q_] := Module[{x, n}, x=FactorInteger[2^n+1]; n=Length[x]; Sum[Table[x[i]][2]], {i, n}][j]], {j, n}]]
A054992[n_Integer] := PrimeOmega[2^n + 1]; Table[A054992[n], {n, 200}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
PROG
(PARI) a(n)=bigomega(2^n+1) \\ Charles R Greathouse IV, Apr 29 2015
CROSSREFS
bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), this sequence (b=2).
Cf. A046051 (number of prime factors of 2^n-1).
Cf. A086257 (number of primitive prime factors).
Sequence in context: A335420 A241318 A276064 * A096495 A276062 A324386
KEYWORD
nonn
AUTHOR
Arne Ring (arne.ring(AT)epost.de), May 30 2000
EXTENSIONS
Extended by Patrick De Geest, Oct 01 2000
Terms to a(500) in b-file from T. D. Noe, Nov 10 2007
Deleted duplicate (and broken) Wagstaff link. - N. J. A. Sloane, Jan 18 2019
a(500)-a(1062) in b-file from Amiram Eldar, Oct 04 2019
a(1063)-a(1122) in b-file from Max Alekseyev, Jul 15 2023
STATUS
approved