login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038507
a(n) = n! + 1.
(Formerly N0107)
91
2, 2, 3, 7, 25, 121, 721, 5041, 40321, 362881, 3628801, 39916801, 479001601, 6227020801, 87178291201, 1307674368001, 20922789888001, 355687428096001, 6402373705728001, 121645100408832001
OFFSET
0,1
COMMENTS
"For n = 4, 5 and 7, n!+1 is a square. Sierpiński asked if there are any other values of n with this property." p. 82 of Ogilvy and Anderson (see A146968).
Number of {12,12*,1*2,21*,2*1}-avoiding signed permutations in the hyperoctahedral group.
After Wilson's Theorem: if (n+1) is prime then (n+1) is the smallest prime factor of a(n). - Karl-Heinz Hofmann, Aug 21 2024
REFERENCES
C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, p. 82.
Wacław Sierpiński, On some unsolved problems of arithmetics, Scripta Mathematica, vol. 25 (1960), p. 125.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
LINKS
T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2023. - From N. J. A. Sloane, Jun 13 2012
Gerard P. Michon, Wilson's Theorem
Andrew Walker, Factors of n! +- 1
Arthur T. White, Ringing the changes, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 2, 203-215.
Robert G. Wilson v, Explicit factorizations
Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 4.
FORMULA
a(n) = n * (a(n-1) - 1) + 1. - Reinhard Zumkeller, Mar 20 2013
0 = a(n)*(a(n+1) - 5*a(n+2) + 5*a(n+3) - a(n+4)) + a(n+1)*(a(n+1) + a(n+2) - 6*a(n+3) + 2*a(n+4)) + a(n+2)*(3*a(n+2) - a(n+3) - a(n+4)) + a(n+3)*(a(n+3)) if n>=0. - Michael Somos, Apr 23 2014
From Ilya Gutkovskiy, Jan 20 2017: (Start)
E.g.f: exp(x) + 1/(1 - x).
Sum_{n>=0} 1/a(n) = A217702. (End)
EXAMPLE
G.f. = 2 + 2*x + 3*x^2 + 7*x^3 + 25*x^4 + 121*x^5 + 721*x^6 + 5041*x^7 + ...
MATHEMATICA
Range[0, 20]!+1 (* Harvey P. Dale, May 06 2012 *)
PROG
(Magma) [Factorial(n) +1: n in [0..25]]; // Vincenzo Librandi, Jul 20 2011
(Maxima) A038507(n):= n!+1$
makelist(A038507(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
(PARI) a(n)=n!+1 \\ Charles R Greathouse IV, Nov 20 2012
(Haskell)
a038507 = (+ 1) . a000142
a038507_list = 2 : f 1 2 where
f x y = z : f (x + 1) z where z = x * (y - 1) + 1
-- Reinhard Zumkeller, Mar 20 2013
(Python)
from math import factorial
def A038507(n): return factorial(n) + 1 # Karl-Heinz Hofmann, Aug 21 2024
KEYWORD
nonn,easy,nice
EXTENSIONS
Additional comments from Jason Earls, Apr 01 2001
Numericana.com URL fixed by Gerard P. Michon, Mar 30 2010
Entry revised by N. J. A. Sloane, Jun 10 2012
STATUS
approved