login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002981
Numbers k such that k! + 1 is prime.
(Formerly M0908)
112
0, 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, 872, 1477, 6380, 26951, 110059, 150209, 288465, 308084, 422429
OFFSET
1,3
COMMENTS
If n + 1 is prime then (by Wilson's theorem) n + 1 divides n! + 1. Thus for n > 2 if n + 1 is prime n is not in the sequence. - Farideh Firoozbakht, Aug 22 2003
For n > 2, n! + 1 is prime <==> nextprime((n+1)!) > (n+1)nextprime(n!) and we can conjecture that for n > 2 if n! + 1 is prime then (n+1)! + 1 is not prime. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 03 2004
The prime members are in A093804 (numbers n such that Sum_{d|n} d! is prime) since Sum_{d|n} d! = n! + 1 if n is prime. - Jonathan Sondow
150209 is also in the sequence, cf. the link to Caldwell's prime pages. - M. F. Hasler, Nov 04 2011
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 116, p. 40, Ellipses, Paris 2008.
Harvey Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3, 1987), 197-203.
Richard K. Guy, Unsolved Problems in Number Theory, Section A2.
F. Le Lionnais, Les Nombres Remarquables, Paris, Hermann, 1983, p. 100.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 70.
LINKS
A. Borning, Some results for k!+-1 and 2.3.5...p+-1, Math. Comp., 26 (1972), 567-570.
Chris K. Caldwell, Factorial Primes.
Chris K. Caldwell, 110059! + 1 on the Prime Pages.
Chris K. Caldwell, 150209! + 1 on the Prime Pages (Oct 31, 2011).
Chris K. Caldwell, 288465! + 1 on the Prime Pages (Jan 12, 2022).
Chris K. Caldwell and Y. Gallot, On the primality of n!+-1 and 2*3*5*...*p+-1, Math. Comp., 71 (2001), 441-448.
Antonín Čejchan, Michal Křížek, and Lawrence Somer, On Remarkable Properties of Primes Near Factorials and Primorials, Journal of Integer Sequences, Vol. 25 (2022), Article 22.1.4.
H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3, 1987), 197-203. (Annotated scanned copy)
H. Dubner and N. J. A. Sloane, Correspondence, 1991.
R. K. Guy and N. J. A. Sloane, Correspondence, 1985.
N. Kuosa, Source for 6380.
Des MacHale and Joseph Manning, Maximal runs of strictly composite integers, The Mathematical Gazette, 99, pp 213-219 (2015).
Romeo Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - From N. J. A. Sloane, Jun 13 2012
Hisanori Mishima, Factors of N!+1.
PrimePages, Factorial Primes.
Eric Weisstein's World of Mathematics, Factorial Prime.
Eric Weisstein's World of Mathematics, Integer Sequence Primes.
EXAMPLE
3! + 1 = 7 is prime, so 3 is in the sequence.
MATHEMATICA
v = {0, 1, 2}; Do[If[ !PrimeQ[n + 1] && PrimeQ[n! + 1], v = Append[v, n]; Print[v]], {n, 3, 29651}]
Select[Range[100], PrimeQ[#! + 1] &] (* Alonso del Arte, Jul 24 2014 *)
PROG
(PARI) for(n=0, 500, if(ispseudoprime(n!+1), print1(n", "))) \\ Charles R Greathouse IV, Jun 16 2011
(Magma) [n: n in [0..800] | IsPrime(Factorial(n)+1)]; // Vincenzo Librandi, Oct 31 2018
(Python)
from sympy import factorial, isprime
for n in range(0, 800):
if isprime(factorial(n)+1):
print(n, end=', ') # Stefano Spezia, Jan 10 2019
CROSSREFS
Cf. A002982 (n!-1 is prime), A064295. A088332 gives the primes.
Equals A090660 - 1.
Cf. A093804.
Sequence in context: A284046 A048412 A259428 * A294637 A295613 A232212
KEYWORD
nonn,nice,hard,more
EXTENSIONS
a(19) sent in by Jud McCranie, May 08 2000
a(20) from Ken Davis (kraden(AT)ozemail.com.au), May 24 2002
a(21) found by PrimeGrid around Jun 11 2011, submitted by Eric W. Weisstein, Jun 13 2011
a(22) from Rene Dohmen, Jun 09 2012
a(23) from Rene Dohmen, Jan 12 2022
a(24)-a(25) from Dmitry Kamenetsky, Jun 19 2024
STATUS
approved