login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002984 a(0) = 1; for n>0, a(n) = a(n-1) + floor( sqrt a(n-1) ).
(Formerly M0554)
9
1, 2, 3, 4, 6, 8, 10, 13, 16, 20, 24, 28, 33, 38, 44, 50, 57, 64, 72, 80, 88, 97, 106, 116, 126, 137, 148, 160, 172, 185, 198, 212, 226, 241, 256, 272, 288, 304, 321, 338, 356, 374, 393, 412, 432, 452, 473, 494, 516, 538, 561, 584, 608, 632, 657, 682, 708, 734 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For n>3 we have a(n) < n^2/4 and for n>44 we have a(n) > n^2/5. - Stefan Steinerberger, Apr 17 2006

This sequence contains an infinity of squares . [Philippe Deléham, Apr 03 2009]

This is to floor as A033638 is to round. [Jonathan Vos Post, Oct 08 2011].

The squares in this sequence are precisely the powers of 4. - Franklin T. Adams-Watters, Jan 06 2014

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

FORMULA

a(n+1) = a(n) + A000196(a(n)). [Reinhard Zumkeller, Dec 28 2011]

MATHEMATICA

NestList[ # + Floor[ Sqrt[ # ] ] &, 1, 50 ]

PROG

(Haskell)

a002984 n = a002984_list !! n

a002984_list = iterate (\x -> x + a000196 x) 1

-- Reinhard Zumkeller, Dec 28 2011

(MAGMA) [n le 0 select 1 else Self(n)+Floor(Sqrt(Self(n))): n in [0..60]]; // Bruno Berselli, Feb 15 2013

CROSSREFS

Cf. A000302 (subsequence of squares).

Essentially the same as A109965.

Sequence in context: A089649 A049700 * A109965 A008669 A055104 A062435

Adjacent sequences:  A002981 A002982 A002983 * A002985 A002986 A002987

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Dec 14 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 24 03:21 EDT 2017. Contains 286937 sequences.