The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002985 Number of trees in an n-node wheel. (Formerly M0783) 1
 1, 1, 1, 2, 3, 6, 11, 20, 36, 64, 108, 179, 292, 464, 727, 1124, 1714, 2585, 3866, 5724, 8418, 12290, 17830, 25713, 36898, 52664, 74837, 105873, 149178, 209364, 292793, 407990, 566668, 784521, 1082848, 1490197, 2045093, 2798895, 3820629, 5202085 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS This is the number of nonequivalent spanning trees of the n-wheel graph up to isomorphism of the trees. REFERENCES F. Harary, P. E. O'Neil, R. C. Read and A. J. Schwenk, The number of trees in a wheel, in D. J. A. Welsh and D. R. Woodall, editors, Combinatorics. Institute of Mathematics and Its Applications. Southend-on-Sea, England, 1972, pp. 155-163. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Andrew Howroyd, Table of n, a(n) for n = 1..200 Andrew Howroyd, Derivation of formula Eric Weisstein's World of Mathematics, Wheel Graph FORMULA a(n) = A003293(n-1) - A008804(n-3). - Andrew Howroyd, Oct 09 2017 EXAMPLE All trees that span a wheel on 5 nodes are equivalent to one of the following:       o         o         o       |         | \     /   \    o--o--o   o--o  o   o--o  o       |         |           /       o         o         o MATHEMATICA terms = 40; A003293[n_] := SeriesCoefficient[Product[(1-x^k)^(-Ceiling[k/2]), {k, 1, terms}], {x, 0, n}]; A008804[n_] := SeriesCoefficient[1/((1-x)^4 (1+x)^2 (1+x^2)), {x, 0, n}]; a[n_] := A003293[n-1] - A008804[n-3]; Array[a, terms] (* Jean-François Alcover, Sep 02 2019 *) PROG (PARI) \\ here b(n) is A003293 and d(n) is A008804. b(n)={polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^-ceil(k/2)), n)} d(n)={(84+12*(-1)^n+6*I*((-I)^n-I^n)+(85+3*(-1)^n)*n+24*n^2+2*n^3)/96} a(n)=b(n-1)-d(n-3); \\ Andrew Howroyd, Oct 09 2017 CROSSREFS Cf. A003293, A004146, A008804. Sequence in context: A131269 A047081 A090167 * A239342 A093608 A320328 Adjacent sequences:  A002982 A002983 A002984 * A002986 A002987 A002988 KEYWORD nonn AUTHOR EXTENSIONS Terms a(32) and beyond from Andrew Howroyd, Oct 09 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 05:11 EDT 2021. Contains 343072 sequences. (Running on oeis4.)