Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0783 #27 Oct 20 2023 22:04:55
%S 1,1,1,2,3,6,11,20,36,64,108,179,292,464,727,1124,1714,2585,3866,5724,
%T 8418,12290,17830,25713,36898,52664,74837,105873,149178,209364,292793,
%U 407990,566668,784521,1082848,1490197,2045093,2798895,3820629,5202085
%N Number of trees in an n-node wheel.
%C This is the number of nonequivalent spanning trees of the n-wheel graph up to isomorphism of the trees.
%D F. Harary, P. E. O'Neil, R. C. Read and A. J. Schwenk, The number of trees in a wheel, in D. J. A. Welsh and D. R. Woodall, editors, Combinatorics. Institute of Mathematics and Its Applications. Southend-on-Sea, England, 1972, pp. 155-163.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Andrew Howroyd, <a href="/A002985/b002985.txt">Table of n, a(n) for n = 1..200</a>
%H Andrew Howroyd, <a href="/A002985/a002985.txt">Derivation of formula</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WheelGraph.html">Wheel Graph</a>.
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F a(n) = A003293(n-1) - A008804(n-3). - _Andrew Howroyd_, Oct 09 2017
%e All trees that span a wheel on 5 nodes are equivalent to one of the following:
%e o o o
%e | | \ / \
%e o--o--o o--o o o--o o
%e | | /
%e o o o
%t terms = 40;
%t A003293[n_] := SeriesCoefficient[Product[(1-x^k)^(-Ceiling[k/2]), {k, 1, terms}], {x, 0, n}];
%t A008804[n_] := SeriesCoefficient[1/((1-x)^4 (1+x)^2 (1+x^2)), {x, 0, n}];
%t a[n_] := A003293[n-1] - A008804[n-3];
%t Array[a, terms] (* _Jean-François Alcover_, Sep 02 2019 *)
%o (PARI) \\ here b(n) is A003293 and d(n) is A008804.
%o b(n)={polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^-ceil(k/2)), n)}
%o d(n)={(84+12*(-1)^n+6*I*((-I)^n-I^n)+(85+3*(-1)^n)*n+24*n^2+2*n^3)/96}
%o a(n)=b(n-1)-d(n-3); \\ _Andrew Howroyd_, Oct 09 2017
%Y Cf. A003293, A004146, A008804.
%K nonn
%O 1,4
%A _N. J. A. Sloane_
%E Terms a(32) and beyond from _Andrew Howroyd_, Oct 09 2017