login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295613
Solution of the complementary equation a(n) = 2*a(n-1) - a(n-3) + b(n-1), where a(0) = 1, a(1) = 2, a(2) = 3, b(0) = 4, b(1) = 5, b(2) = 6, and (a(n)) and (b(n)) are increasing complementary sequences.
6
1, 2, 3, 11, 27, 59, 116, 215, 383, 663, 1125, 1882, 3117, 5126, 8388, 13678, 22250, 36133, 58610, 94993, 153877, 249169, 403371, 652893, 1056646, 1709951, 2767040, 4477466, 7245014, 11723022, 18968613, 30692248, 49661511, 80354447, 130016685, 210371899
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. Guide to related sequences:
A295613: a(n) = 2*a(n-1) - a(n-3) + b(n-1); a(0) = 1, a(1) = 2, a(2) = 3, b(0) = 4, b(1) = 5, b(2) = 6.
A295614: a(n) = 2*a(n-1) - a(n-3) + b(n-1); a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6.
A295615: a(n) = 2*a(n-1) - a(n-3) + b(n-1); a(0) = 2, a(1) = 4, a(2) = 6, b(0) = 1, b(1) = 3, b(2) = 5.
A295616: a(n) = 2*a(n-1) - a(n-3) + b(n-2); a(0) = 1, a(1) = 2, a(2) = 3, b(0) = 4, b(1) = 5, b(2) = 6.
A295617: a(n) = 2*a(n-1) - a(n-3) + b(n-2); a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6.
A295618: a(n) = 2*a(n-1) - a(n-3) + b(n-2); a(0) = 2, a(1) = 4, a(2) = 6, b(0) = 1, b(1) = 3, b(2) = 5.
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 2, a(2) = 3, b(0) = 4, b(1) = 5, b(2) = 6, so that
b(3) = 7 (least "new number")
a(3) = 2*a(2) - a(0) + b(2) = 11
Complement: (b(n)) = (4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, ...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; a[2] = 3; b[0] = 4; b[1] = 5; b[2] = 6;
a[n_] := a[n] = 2 a[n - 1] - a[n - 3] + b[n - 1];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 30}] (* A295613 *)
Table[b[n], {n, 0, 20}] (* complement *)
CROSSREFS
Sequence in context: A259428 A002981 A294637 * A232212 A232219 A265095
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 25 2017
STATUS
approved