The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295611 a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)^k. 2
 1, 0, 0, 6, -30, -280, 35070, -2508268, -47103462, 241470400824, -256752145545390, 128291714550379292, 2203924344437376054780, -37693423679943326954848176, 485163732930867224220253809178, 27101025121379607823580070619517816 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..75 Eric Weisstein's World of Mathematics, Binomial Sums FORMULA a(n) = Sum_{k=0..n} (-1)^k*A219206(n,k). Limit n->infinity |a(n)|^(1/n^2) = r^(r^2/(1-2*r)) = 1.533628065110458582053143..., where r = A220359 = 0.70350607643066243096929661621777... is the real root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Nov 25 2017 MATHEMATICA Table[Sum[(-1)^k Binomial[n, k]^k, {k, 0, n}], {n, 0, 15}] Table[Sum[(-1)^k (n!/(k! (n - k)!))^k, {k, 0, n}], {n, 0, 15}] PROG (PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n, k)^k); \\ Michel Marcus, Nov 25 2017 CROSSREFS Cf. A167008, A167010, A219206. Sequence in context: A066108 A205339 A215288 * A264641 A110374 A232978 Adjacent sequences:  A295608 A295609 A295610 * A295612 A295613 A295614 KEYWORD sign AUTHOR Ilya Gutkovskiy, Nov 24 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 13:47 EST 2021. Contains 349420 sequences. (Running on oeis4.)