login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219206
Triangle, read by rows, where T(n,k) = binomial(n,k)^k for n>=0, k=0..n.
6
1, 1, 1, 1, 2, 1, 1, 3, 9, 1, 1, 4, 36, 64, 1, 1, 5, 100, 1000, 625, 1, 1, 6, 225, 8000, 50625, 7776, 1, 1, 7, 441, 42875, 1500625, 4084101, 117649, 1, 1, 8, 784, 175616, 24010000, 550731776, 481890304, 2097152, 1, 1, 9, 1296, 592704, 252047376, 31757969376, 351298031616, 78364164096, 43046721, 1
OFFSET
0,5
COMMENTS
Maximal term in row n is asymptotically in position k = r*n, where r = A220359 = 0.70350607643... is a root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Nov 15 2012
LINKS
FORMULA
Row sums equal A167008.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 9, 1;
1, 4, 36, 64, 1;
1, 5, 100, 1000, 625, 1;
1, 6, 225, 8000, 50625, 7776, 1;
1, 7, 441, 42875, 1500625, 4084101, 117649, 1;
1, 8, 784, 175616, 24010000, 550731776, 481890304, 2097152, 1;
...
PROG
(PARI) {T(n, k)=binomial(n, k)^k}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(Haskell)
a219206 n k = a219206_tabl !! n !! k
a219206_row n = a219206_tabl !! n
a219206_tabl = zipWith (zipWith (^)) a007318_tabl a002262_tabl
-- Reinhard Zumkeller, Feb 27 2015
CROSSREFS
Cf. A167008 (row sums).
Sequence in context: A293908 A346249 A235453 * A077385 A337219 A220898
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 14 2012
STATUS
approved