login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Solution of the complementary equation a(n) = 2*a(n-1) - a(n-3) + b(n-1), where a(0) = 1, a(1) = 2, a(2) = 3, b(0) = 4, b(1) = 5, b(2) = 6, and (a(n)) and (b(n)) are increasing complementary sequences.
6

%I #7 Aug 27 2021 21:14:33

%S 1,2,3,11,27,59,116,215,383,663,1125,1882,3117,5126,8388,13678,22250,

%T 36133,58610,94993,153877,249169,403371,652893,1056646,1709951,

%U 2767040,4477466,7245014,11723022,18968613,30692248,49661511,80354447,130016685,210371899

%N Solution of the complementary equation a(n) = 2*a(n-1) - a(n-3) + b(n-1), where a(0) = 1, a(1) = 2, a(2) = 3, b(0) = 4, b(1) = 5, b(2) = 6, and (a(n)) and (b(n)) are increasing complementary sequences.

%C The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. Guide to related sequences:

%C A295613: a(n) = 2*a(n-1) - a(n-3) + b(n-1); a(0) = 1, a(1) = 2, a(2) = 3, b(0) = 4, b(1) = 5, b(2) = 6.

%C A295614: a(n) = 2*a(n-1) - a(n-3) + b(n-1); a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6.

%C A295615: a(n) = 2*a(n-1) - a(n-3) + b(n-1); a(0) = 2, a(1) = 4, a(2) = 6, b(0) = 1, b(1) = 3, b(2) = 5.

%C A295616: a(n) = 2*a(n-1) - a(n-3) + b(n-2); a(0) = 1, a(1) = 2, a(2) = 3, b(0) = 4, b(1) = 5, b(2) = 6.

%C A295617: a(n) = 2*a(n-1) - a(n-3) + b(n-2); a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6.

%C A295618: a(n) = 2*a(n-1) - a(n-3) + b(n-2); a(0) = 2, a(1) = 4, a(2) = 6, b(0) = 1, b(1) = 3, b(2) = 5.

%C a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).

%H Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13.

%e a(0) = 1, a(1) = 2, a(2) = 3, b(0) = 4, b(1) = 5, b(2) = 6, so that

%e b(3) = 7 (least "new number")

%e a(3) = 2*a(2) - a(0) + b(2) = 11

%e Complement: (b(n)) = (4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, ...)

%t mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;

%t a[0] = 1; a[1] = 2; a[2] = 3; b[0] = 4; b[1] = 5; b[2] = 6;

%t a[n_] := a[n] = 2 a[n - 1] - a[n - 3] + b[n - 1];

%t b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];

%t Table[a[n], {n, 0, 30}] (* A295613 *)

%t Table[b[n], {n, 0, 20}] (* complement *)

%Y Cf. A001622, A000045.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Nov 25 2017