login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A265095
a(n) = Sum_{k=0..n} q(k)^k, where q(k) = partition numbers into distinct parts (A000009).
1
1, 2, 3, 11, 27, 270, 4366, 82491, 1762107, 135979835, 10135979835, 753144350523, 130499482241148, 20953464347912316, 6242774737775732860, 2960555481288609431503, 1211886375095917784137679, 719537152598665509899534287, 851154233276178632011679465423
OFFSET
0,2
FORMULA
a(n) ~ exp(n^(3/2)*Pi/sqrt(3) + (Pi/(48*sqrt(3)) - 3*sqrt(3)/(8*Pi))*sqrt(n) - 1/32 - 9/(16*Pi^2)) / (3^(n/4) * 4^n * n^(3*n/4)) ~ q(n)^n.
MATHEMATICA
Table[Sum[PartitionsQ[k]^k, {k, 0, n}], {n, 0, 20}]
CROSSREFS
Sequence in context: A295613 A232212 A232219 * A301804 A335856 A335816
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 01 2015
STATUS
approved