login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301804
Sequence satisfies: 1 = Sum_{n>=1} 2^(n*(n-1)) / a(n)^n, with a(1) = 2, by a greedy algorithm.
1
2, 3, 11, 28, 67, 181, 540, 1605, 4500, 12770, 37773, 127030, 444950, 1379830, 4396237, 13632772, 45274296, 158468043, 530856473, 1800446217, 6279909810, 24743271334, 85850127322, 290413108775, 977634838108, 3306283825369, 11185652749615, 38838048510711, 133953360029207, 459989927920851, 1634605692726786, 5918370893528999, 20465922530700426, 71980481052561822, 265331221445369542
OFFSET
1,1
COMMENTS
It appears that the limit a(n+1)/a(n) exists and is near 4.
LINKS
EXAMPLE
1 = 1/2 + 2^2/3^2 + 2^6/11^3 + 2^12/28^4 + 2^20/67^5 + 2^30/181^6 + 2^42/540^7 + 2^56/1605^8 + 2^72/4500^9 + 2^90/12770^10 + 2^110/37773^11 + 2^132/127030^12 + 2^156/444950^13 + 2^182/1379830^14 + 2^210/4396237^15 + 2^240/13632772^16 + 2^272/45274296^17 + 2^306/158468043^18 + 2^342/530856473^19 + 2^380/1800446217^20 + 2^420/6279909810^21 + ... + ( 2^(n-1)/a(n) )^n + ...
Incidentally,
Sum_{n>=1} 2^(n-1)/a(n) = 2.594806011516631787617662898514062588686879234...
Sum_{n>=1} 2^(n^2)/a(n)^n = 3.295922872490926100815120594347157182861242917...
Sum_{n>=1} 2^(n*(n+1))/a(n)^n = 14.82031378016256272989741456078817533736...
Sum_{n>=1} 1/a(n) = 0.983220030675069959469784597542593767565029822764...
PROG
(PARI) /* Must have appropriate precision for N terms: */ N = 100;
{A=[2]; for(i=1, N, A=concat(A, 1 + floor((1/(1 - sum(n=1, #A, (2^n)^(n-1)/A[n]^n *1.))*2^((#A)*(#A+1)) )^(1/(#A+1))) ) ; print1(#A, ", ")); A}
CROSSREFS
Sequence in context: A232212 A232219 A265095 * A335856 A335816 A330979
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 27 2018
STATUS
approved